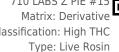


COMPLIANCE FOR RETAIL

710 Labe Z PIE #18

Prod. Date: 07/30/25 Sey 25, 50 018 010 0011 00 011 010 010 110 1 010


Laboratory Sample ID: DA50730015-001

Kaycha Labs

710 LIVE ROSIN BADDER - 2.5G 710 Labs Z PIE #15

710 LABS Z PIE #15

Classification: High THC Type: Live Rosin

Production Method: Other - Not Listed Harvest/Lot ID: 0773316962245020

> Batch#: 8894828774167163 **Cultivation Facility: Homestead**

Processing Facility: Homestead Source Facility: Homestead

Seed to Sale#: 0773316962245020 Harvest Date: 07/30/25

Sample Size Received: 7 units Total Amount: 130 units

Retail Product Size: 2.5 gram Retail Serving Size: 2.5 gram

Servings: 1

Sampled: 07/30/25 Completed: 08/02/25

Sampling Method: SOP.T.20.010

PASSED

≢FLOWERY

Pages 1 of 6

SAFETY RESULTS

Homestead, FL, 33090, US

Pesticides **PASSED**

Heavy Metals **PASSED**

Certificate of Analysis

Microbials **PASSED**

Mycotoxins **PASSED**

Residuals Solvents **PASSED**

PASSED

Water Activity **PASSED**

Moisture **NOT TESTED**

MISC.

Terpenes **TESTED**

TESTED

Cannabinoid

Aug 02, 2025 | The Flowery

Total THC

Total THC/Container: 1820 mg

Total CBD

Total Cannabinoids

Total Cannabinoids/Container: 2160 mg

		П									
	D9-THC	THCA	CBD	CBDA	D8-THC	СВБ	CBGA	CBN	THCV	CBDV	СВС
%	1.24	81.6	ND	0.189	0.0480	0.409	2.79	ND	ND	< 0.01	0.0190
mg/unit	31.1	2040	ND	4.73	1.20	10.2	69.7	ND	ND	< 0.25	0.475
LOD	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	%	%	%	%	%	%	%	%	%	%	%
Analyzed by: 3335, 585, 1440			Weight: 0.1072		Extraction 07/31/25 1				Extracte 3335,46		

Analysis Method: SOP.T.40.031, SOP.T.30.031
Analytical Batch: DA089040POT

Instrument Used: DA-LC-003 Analyzed Date: 08/01/25 11:23:17

Reagent: 072525.R02; 061825.03; 072525.R05

Consumables: 947.110; 04402004; 040724CH01; 0000355309

Label Claim

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

Batch Date: 07/31/25 09:42:20

PASSED

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

Kaycha Labs 710 LIVE ROSIN BADDER - 2.5G 710 Labs Z PIE #15 710 LABS Z PIE #15 Matrix : Derivative Type: Live Rosin

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co

Sample : DA50730015-001 Harvest/Lot ID: 0773316962245020

Batch#: 8894828774167163 Sample Size Received: 7 units Sampled: 07/30/25

Ordered: 07/30/25

Total Amount: 130 units **Completed:** 08/02/25 **Expires:** 08/02/26 Sample Method: SOP.T.20.010

Page 2 of 6

Terpenes

TESTED

Terpenes					
	LOD (%)	Pass/Fail	mg/unit	Result (%)	
SABINENE	0.007	TESTED	ND	ND	
SABINENE HYDRATE	0.007		ND	ND	
	0.007	TESTED	ND	ND	
	0.005	TESTED	ND	ND	
ALPHA-PHELLANDRENE	0.007	TESTED	ND	ND	
ALPHA-TERPINENE	0.007	TESTED	ND	ND	
CIS-NEROLIDOL	0.003	TESTED	ND	ND	
GAMMA-TERPINENE	0.007	TESTED	ND	ND	
Analyzed by:	Weigh	t	Extractio	on date:	Extracted by:
4444, 4451, 585, 1440	0.182	3	07/31/25	5 12:37:33	4444
Analysis Method : SOP.T.30.061A.FL, SOP.T.	40.061A.FL				
				Batal Bata - 07/21/25 10:20:20	
				Battin Date : 07/31/23 10:20:20	2
Reagent: 062725.52					
	6; 0000355309				
Terpenoid testing is performed utilizing Gas Chron	matography Mass Spectrometry.	For all Flower sa	mples, the Total	Terpenes % is dry-weight corrected.	
	SABINEM HYDRATE VALENCINE APPIA-CEDENIE APPIA-TELANDENIE APPIA-TERNENIE CS-RECOLDO. GAMMA-TERPHENIE ADIPIA-TERPHENIE ADIPIA-T	SABINEME HYDRATE	SABINEME HYDRATE	SABINEME HYDRATE	SABMENE HYDRATE

Total (%)

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs 710 LIVE ROSIN BADDER - 2.5G 710 Labs Z PIE #15 710 LABS Z PIE #15 Matrix : Derivative Type: Live Rosin

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co

Sample : DA50730015-001 Harvest/Lot ID: 0773316962245020

Sampled: 07/30/25 Ordered: 07/30/25

Batch#: 8894828774167163 Sample Size Received: 7 units Total Amount: 130 units **Completed:** 08/02/25 **Expires:** 08/02/26 Sample Method: SOP.T.20.010

Page 3 of 6

Pesticides

PASSE	P/	AS	<i>-</i>	Þ	:L
-------	----	----	----------	---	----

esticide	LOD	Units	Action Level	Pass/Fail		Pesticide		LOD	Units	Action Level	Pass/Fail	Resu
OTAL CONTAMINANT LOAD (PESTICIDES)	0.01	ppm	5	PASS	ND	OXAMYL		0.01	ppm	0.5	PASS	ND
TAL DIMETHOMORPH	0.01	ppm	0.2	PASS	ND	PACLOBUTRAZOL		0.01	ppm	0.1	PASS	ND
TAL PERMETHRIN	0.01	ppm	0.1	PASS	ND	PHOSMET		0.01	ppm	0.1	PASS	ND
TAL PYRETHRINS	0.01	ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE		0.01	mag	3	PASS	ND
TAL SPINETORAM	0.01	ppm	0.2	PASS	ND	PRALLETHRIN		0.01	ppm	0.1	PASS	ND
TAL SPINOSAD	0.01	ppm	0.1	PASS	ND			0.01	1.1.	0.1	PASS	ND
AMECTIN B1A	0.01	ppm	0.1	PASS	ND	PROPICONAZOLE			ppm			
EPHATE	0.01	ppm	0.1	PASS	ND	PROPOXUR		0.01	ppm	0.1	PASS	ND
EQUINOCYL	0.01	ppm	0.1	PASS	ND	PYRIDABEN		0.01	ppm	0.2	PASS	ND
TAMIPRID	0.01	ppm	0.1	PASS	ND	SPIROMESIFEN		0.01	ppm	0.1	PASS	ND
DICARB	0.01	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.01	ppm	0.1	PASS	ND
DXYSTROBIN	0.01	ppm	0.1	PASS	ND	SPIROXAMINE		0.01	ppm	0.1	PASS	ND
ENAZATE	0.01	ppm	0.1	PASS	ND	TEBUCONAZOLE		0.01	ppm	0.1	PASS	ND
ENTHRIN	0.01	ppm	0.1	PASS	ND	THIACLOPRID		0.01	ppm	0.1	PASS	ND
SCALID	0.01	ppm	0.1	PASS	ND	THIAMETHOXAM		0.01	ppm	0.5	PASS	ND
RBARYL	0.01	ppm	0.5	PASS	ND	TRIFLOXYSTROBIN		0.01	maa	0.1	PASS	ND
RBOFURAN	0.01	ppm	0.1	PASS	ND		FNE (BCNB) ::	0.01	1.1.	0.15	PASS	ND
LORANTRANILIPROLE	0.01	ppm	1	PASS	ND	PENTACHLORONITROBENZ	ENE (PCNB) *		ppm			
LORMEQUAT CHLORIDE	0.01	ppm	1	PASS	ND	PARATHION-METHYL *		0.01	ppm	0.1	PASS	ND
LORPYRIFOS	0.01	ppm	0.1	PASS	ND	CAPTAN *		0.07	ppm	0.7	PASS	ND
DFENTEZINE	0.01	ppm	0.2	PASS	ND	CHLORDANE *		0.01	ppm	0.1	PASS	ND
JMAPHOS	0.01	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.01	ppm	0.1	PASS	ND
MINOZIDE	0.01	ppm	0.1	PASS	ND	CYFLUTHRIN *		0.05	ppm	0.5	PASS	ND
ZINON	0.01	ppm	0.1	PASS	ND	CYPERMETHRIN *		0.05	ppm	0.5	PASS	ND
HLORVOS	0.01	ppm	0.1	PASS	ND	Analyzed by:	Weight:		tion date:		Extracte	al laver
IETHOATE	0.01	ppm	0.1	PASS	ND	4056, 585, 1440	0.2614q		25 19:06:3		450	u by.
HOPROPHOS	0.01	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30			20 20.00.0		.50	
DFENPROX	0.01	ppm	0.1	PASS	ND	Analytical Batch : DA08905						
DXAZOLE	0.01	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS			Batc	Date: 07/3	1/25 10:42:42	
IHEXAMID	0.01	ppm	0.1	PASS	ND	Analyzed Date: 08/02/25 1	7:02:50					
IOXYCARB	0.01	ppm	0.1	PASS	ND	Dilution: 250						
IPYROXIMATE	0.01	ppm	0.1	PASS	ND	Reagent: 072825.R03; 043			25.R05; 07.	2925.R06; 07	0225.R43; 073	3025.R0
PRONIL	0.01	ppm	0.1	PASS	ND	Consumables: 927.100; 03 Pipette: DA-093; DA-094; D		423-02				
ONICAMID	0.01	ppm	0.1	PASS	ND	Testing for agricultural agents		izina Liquid	Chromator	ranhy Trinle-	Quadrunole Ma	SS
UDIOXONIL	0.01	ppm	0.1	PASS	ND	Spectrometry in accordance v			S.II OIII ato	, aprily imple-	Quadi apoic Ma	55
XYTHIAZOX	0.01	ppm	0.1	PASS	ND	Analyzed by:	Weight:		ion date:		Extracte	d by:
AZALIL	0.01	ppm	0.1	PASS	ND	450, 585, 1440	0.2614g	07/31/2	5 19:06:30		450	-
DACLOPRID	0.01	ppm	0.4	PASS	ND	Analysis Method: SOP.T.30		40.151.FL				
ESOXIM-METHYL	0.01	ppm	0.1	PASS	ND	Analytical Batch : DA08905						
ATHION	0.01	ppm	0.2	PASS	ND	Instrument Used : DA-GCMS			Batch D	ate:07/31/2	15 10:45:32	
TALAXYL	0.01	ppm	0.1	PASS	ND	Analyzed Date: 08/01/25 13	1:21:12					
THIOCARB	0.01	ppm	0.1	PASS	ND	Dilution: 250 Reagent: 072825.R03; 043	N25 28· N72125	R04· 07213	5 R05			
ГНОМҮL	0.01	ppm	0.1	PASS	ND	Consumables: 927.100; 03						
VINPHOS	0.01	ppm	0.1	PASS	ND	Pipette : DA-080; DA-146; D		, -,				
CLOBUTANIL	0.01	ppm	0.1	PASS	ND	Testing for agricultural agents		izing Gas C	hromatogra	phy Triple-Qu	adrupole Mass	Spectr
			0.25	PASS		in accordance with F.S. Rule 6						

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs ■ 710 LIVE ROSIN BADDER - 2.5G 710 Labs Z PIE #15 710 LABS Z PIE #15 Matrix : Derivative Type: Live Rosin

PASSED

Certificate of Analysis

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Email: brian@theflowerv.co

Sample : DA50730015-001 Harvest/Lot ID: 0773316962245020

Batch#: 8894828774167163 Sample Size Received: 7 units Sampled: 07/30/25 Ordered: 07/30/25

Total Amount: 130 units **Completed:** 08/02/25 **Expires:** 08/02/26 Sample Method: SOP.T.20.010

Page 4 of 6

Residual Solvents

PASSED

Solvents	LOD	Units	Action Level	Pass/Fail	Result
1,1-DICHLOROETHENE	0.8	ppm	8	PASS	ND
1,2-DICHLOROETHANE	0.2	ppm	2	PASS	ND
2-PROPANOL	50	ppm	500	PASS	ND
ACETONE	75	ppm	750	PASS	ND
ACETONITRILE	6	ppm	60	PASS	ND
BENZENE	0.1	ppm	1	PASS	ND
BUTANES (N-BUTANE)	500	ppm	5000	PASS	ND
CHLOROFORM	0.2	ppm	2	PASS	ND
DICHLOROMETHANE	12.5	ppm	125	PASS	ND
ETHANOL	500	ppm	5000	PASS	ND
ETHYL ACETATE	40	ppm	400	PASS	ND
ETHYL ETHER	50	ppm	500	PASS	ND
ETHYLENE OXIDE	0.5	ppm	5	PASS	ND
HEPTANE	500	ppm	5000	PASS	ND
METHANOL	25	ppm	250	PASS	ND
N-HEXANE	25	ppm	250	PASS	ND
PENTANES (N-PENTANE)	75	ppm	750	PASS	ND
PROPANE	500	ppm	5000	PASS	ND
TOLUENE	15	ppm	150	PASS	ND
TOTAL XYLENES	15	ppm	150	PASS	ND
TRICHLOROETHYLENE	2.5	ppm	25	PASS	ND
Analyzed by: 4451, 585, 1440	Weight: 0.0214g	Extraction date 07/31/25 15:31			stracted by: 451

Analysis Method : SOP.T.40.041.FL Analytical Batch : DA089076SOL Instrument Used: DA-GCMS-012

Analyzed Date: $08/01/25 \ 11:12:48$ Dilution: 1

Reagent: 030420.09

Consumables : 429651; 315545 Pipette : DA-416 (25uL Syringe - 44286); DA-418 (25uL Syringe - 44288)

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

Batch Date: 07/31/25 15:03:31

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs ■ 710 LIVE ROSIN BADDER - 2.5G 710 Labs Z PIE #15 710 LABS Z PIE #15 Matrix : Derivative

Type: Live Rosin

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co

Sample : DA50730015-001 Harvest/Lot ID: 0773316962245020

Sampled: 07/30/25 Ordered: 07/30/25

Batch#: 8894828774167163 Sample Size Received: 7 units Total Amount: 130 units Completed: 08/02/25 Expires: 08/02/26 Sample Method: SOP.T.20.010

Page 5 of 6

Microbial

4892.4520

PASSED

Analyte	LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS TERREUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
SALMONELLA SPECIFIC GENE			Not Present	PASS	
ECOLI SHIGELLA			Not Present	PASS	-
TOTAL YEAST AND MOLD	10	CFU/g	<10	PASS	100000 4

Analyzed by: 4520, 585, 1440 Weight: **Extraction date:** Extracted by: 1.004g 07/31/25 10:06:17 4892,4520

Analysis Method : SOP.T.40.056C, SOP.T.40.058.FL, SOP.T.40.209.FL

Analytical Batch : DA089024MIC

Instrument Used: DA-111 (PathogenDx Scanner),DA-013 Batch Da (Thermocycler),DA-049 (95*C Heat Block),DA-402 (55*C Heat Block) 07:15:51 Batch Date: 07/31/25

Analyzed Date: 08/01/25 11:03:04

Reagent: 060925.11; 060925.13; 062125.R13; 072425.R11; 062624.18

1.004a

Consumables: 7585001030

Analyzed by: 4520, 4892, 585, 1440

Pipette: N/A

340	Mycocoxiiis				ras	JLD
Analyte		LOD	Units	Result	Pass / Fail	Action Level
AFLATOXIN E	32	0.002	ppm	ND	PASS	0.02
AFLATOXIN E	31	0.002	ppm	ND	PASS	0.02
OCHPATOVIA	Ι Λ	0.002	nnm	ND	PASS	0.02

				i uii	LCVCI
AFLATOXIN B2		0.002 ppm	ND	PASS	0.02
AFLATOXIN B1		0.002 ppm	ND	PASS	0.02
OCHRATOXIN A		0.002 ppm	ND	PASS	0.02
AFLATOXIN G1		0.002 ppm	ND	PASS	0.02
AFLATOXIN G2		0.002 ppm	ND	PASS	0.02
Analyzed by:	Weight:	Extraction date:		Extracte	d by:
4056, 585, 1440	0.2614g	07/31/25 19:06:30		450	

Analysis Method: SOP.T.30.102.FL, SOP.T.40.102.FL Analytical Batch : DA089055MYC

Instrument Used: DA-LCMS-004 (MYC)

Analyzed Date: 08/02/25 17:02:46

Dilution: 250

Reagent: 072825.R03; 043025.28; 073025.R03; 072925.R05; 072925.R06; 070225.R43; 073025.R01

Consumables: 927.100; 030125CH01; 6822423-02

Pipette: DA-093; DA-094; DA-219

Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Metal

Heavy Metals

PASSED

Result Pass / Action

Batch Date: 07/31/25 10:45:22

Analysis Method: SOP.T.40.209.FL Analytical Batch: DA089025TYM Instrument Used: DA-328 (25*C Incubator) Analyzed Date: 08/02/25 16:28:59	Batch Date : 07/31/25 07:16:10
Dilution: 10 Reagent: 060925.11; 060925.13; 050725.R36; 07: Consumables: N/A Pipette: N/A	2425.R12

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

Extraction date:

07/31/25 10:06:17

_			011110		Fail	Level	
TOTAL CONTAMINAN	T LOAD META	LS 0.08	ppm	ND	PASS	1.1	
ARSENIC		0.02	ppm	ND	PASS	0.2	
CADMIUM		0.02	ppm	ND	PASS	0.2	
MERCURY		0.02	ppm	ND	PASS	0.2	
LEAD		0.02	ppm	ND	PASS	0.5	
Analyzed by: 1022, 585, 1440	Weight: 0.2322a	Extraction date 07/31/25 13:23		Extracted by: 1022.4531			
,,,	0.23229	07/31/23 13.24	2.23	Τ.	122,7331		

LOD

Units

Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL

Analytical Batch : DA089036HEA Instrument Used : DA-ICPMS-004

Batch Date: 07/31/25 09:30:47

Analyzed Date: 08/01/25 11:27:57

Dilution: 50

Reagent: 071825.R05; 071525.R43; 072825.R06; 073125.R04; 072825.R04; 072825.R05;

120324.07; 070325.R02; 061323.01

Consumables: 030125CH01; J609879-0193; 179436

Pipette: DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs **■** 710 LIVE ROSIN BADDER - 2.5G 710 Labs Z PIE #15 710 LABS Z PIE #15 Matrix : Derivative Type: Live Rosin

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co

Sample : DA50730015-001 Harvest/Lot ID: 0773316962245020

Sampled: 07/30/25 Ordered: 07/30/25

Batch#: 8894828774167163 Sample Size Received: 7 units Total Amount: 130 units Completed: 08/02/25 Expires: 08/02/26 Sample Method: SOP.T.20.010

Page 6 of 6

Filth/Foreign **Material**

PASSED

Analyte LOD Units Result P/F **Action Level** Filth and Foreign Material 0.1 % ND PASS Analyzed by: 1879, 1440 Extraction date: 1g 07/31/25 12:04:15 1879

Analysis Method: SOP.T.40.090 Analytical Batch : DA089053FIL
Instrument Used : Filth/Foreign Material Microscope

Batch Date: 07/31/25 10:34:54

Analyzed Date: 07/31/25 12:18:10

Dilution: N/AReagent: N/A Consumables : N/A Pipette: N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Water Activity

Analyte Water Activity		0.01	Units aw	Result 0.57	P/F PASS	Action Leve 0.85
Analyzed by: 4797, 585, 1440	Weight: 0.6228g		traction da 1/31/25 10:		Ex 47	tracted by: 97

Analysis Method: SOP.T.40.019 Analytical Batch: DA089031WAT

Instrument Used : DA-028 Rotronic Hygropalm Batch Date: 07/31/25 08:53:01

Analyzed Date: 08/01/25 10:23:17

Dilution: N/A Reagent: 101724.36 Consumables : PS-14 Pipette: N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164