

Kaycha Labs

FLOWER 14G - 710 JAR 710 Labs Britney's Frozen Lemons #5 710 LABS BRITNEY'S FROZEN LEMONS #5

Matrix: Flower

Classification: High THC Type: Flower-Cured

Cultivation Facility: Homestead

Processing Facility: Homestead Source Facility: Homestead Seed to Sale#: 5130293500132672

> Sample Size Received: 2 units Total Amount: 392 units

Harvest Date: 02/05/25

Retail Product Size: 14 gram Retail Serving Size: 14 gram Servings: 1

> Ordered: 02/05/25 Sampled: 02/05/25

Completed: 02/08/25

Sampling Method: SOP.T.20.010

PASSED

Certificate of Analysis

COMPLIANCE FOR RETAIL

Laboratory Sample ID: DA50205012-004

Feb 08, 2025 | The Flowery

Samples From: Homestead, FL, 33090, US

≢FLOWERY

Pages 1 of 5

SAFETY RESULTS

Heavy Metals **PASSED**

Microbials PASSED

Mycotoxins **PASSED**

Residuals Solvents **NOT TESTED**

Filth **PASSED**

Batch Date: 02/06/25 09:23:57

Water Activity **PASSED**

Moisture **PASSED**

MISC.

Terpenes **PASSED**

PASSED

Cannabinoid

Total THC

Total CBD

Total CBD/Container: 8.820 mg

Total Cannabinoids

Total Cannabinoids/Container: 4324.740

	-									
	-									
D9-THC	THCA	CBD	CBDA	D8-THC	CBG	CBGA	CBN	THCV	CBDV	СВС
0.660	29.065	ND	0.072	0.054	0.111	0.840	ND	ND	ND	0.089
92.40	4069.10	ND	10.08	7.56	15.54	117.60	ND	ND	ND	12.46
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
%	%	%	%	%	%	%	%	%	%	%
9, 1440			Weight: 0.204q		Extraction date: 02/06/25 11:58:01					
	0.660 92.40 0.001 %	0.660 29.065 92.40 4069.10 0.001 0.001 %	0.660 29.065 ND 92.40 4069.10 ND 0.001 0.001 0.001 % %	0.660 29.065 ND 0.072 92.40 4069.10 ND 10.08 0.001 0.001 0.001 0.001 % % %	0.660 29.065 ND 0.072 0.054 92.40 4069.10 ND 10.08 7.56 0.001 0.001 0.001 0.001 0.001 % % % %	0.660 29.065 ND 0.072 0.054 0.111 92.40 4069.10 ND 10.08 7.56 15.54 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % Weight: Extraction date:	0.660 29.065 ND 0.072 0.054 0.111 0.840 92.40 4069.10 ND 10.08 7.56 15.54 117.60 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % Weight: Extraction date:	0.660 29.065 ND 0.072 0.054 0.111 0.840 ND 92.40 4069.10 ND 10.08 7.56 15.54 117.60 ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % %	0.660 29.065 ND 0.072 0.054 0.111 0.840 ND ND 92.40 4069.10 ND 10.08 7.56 15.54 117.60 ND ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % % Weight: Extraction date: Extraction date:	0.660 29.065 ND 0.072 0.054 0.111 0.840 ND ND ND 92.40 4069.10 ND 10.08 7.56 15.54 117.60 ND ND ND 0.001

Analysis Method: SOP.T.40.031, SOP.T.30.031

Analytical Batch: DA083012POT Instrument Used: DA-LC-002 Analyzed Date: 02/07/25 13:10:24

Dilution: 400
Reagent: 012825.R18; 010825.48; 012825.R17
Consumables: 947.110; 04312111; 040724CH01; 0000355309

Pipette: DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

FLOWER 14G - 710 JAR 710 Labs Britney's Frozen Lemons #5 710 LABS BRITNEY'S FROZEN LEMONS #5

Matrix : Flower Type: Flower-Cured

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co

Sample : DA50205012-004 Harvest/Lot ID: 5130293500132672

Sampled: 02/05/25 Ordered: 02/05/25

Batch#: 9255247947092482 Sample Size Received: 2 units Total Amount: 392 units

Completed: 02/08/25 **Expires:** 02/08/26 Sample Method: SOP.T.20.010

Page 2 of 5

Terpenes

PASSED

Terpenes	LOD (%)	mg/uni	t %	Result (%)		Terpenes		LOD (%)	mg/unit	%	Result (%)
TOTAL TERPENES	0.007	683.62	4.883			ISOBORNEOL		0.007	ND	ND	
ALPHA-TERPINOLENE	0.007	281.26	2.009			ISOPULEGOL		0.007	ND	ND	
LIMONENE	0.007	90.02	0.643			NEROL		0.007	ND	ND	
OCIMENE	0.007	73.22	0.523			PULEGONE		0.007	ND	ND	
BETA-MYRCENE	0.007	60.62	0.433			SABINENE HYDRATE		0.007	ND	ND	
BETA-CARYOPHYLLENE	0.007	34.16	0.244			VALENCENE		0.007	ND	ND	
BETA-PINENE	0.007	32.90	0.235			ALPHA-CEDRENE		0.005	ND	ND	
ALPHA-PINENE	0.007	19.04	0.136			CIS-NEROLIDOL		0.003	ND	ND	
ALPHA-PHELLANDRENE	0.007	14.00	0.100		Î	Analyzed by:	Weight:		Extraction	date:	Extracted by:
ALPHA-TERPINEOL	0.007	13.72	0.098			4451, 3379, 1440	1.1151g		02/06/25 1		4451
ALPHA-HUMULENE	0.007	10.50	0.075			Analysis Method : SOP.T.30.061A.FL,	SOP.T.40.061A.FL				
3-CARENE	0.007	10.22	0.073			Analytical Batch : DA083006TER Instrument Used : DA-GCMS-009					ate: 02/06/25 08:59:07
ALPHA-TERPINENE	0.007	10.22	0.073			Analyzed Date: 02/07/25 17:32:19				Batch D	ate: 02/00/25 06:59:07
FENCHYL ALCOHOL	0.007	8.68	0.062			Dilution: 10					
ALPHA-BISABOLOL	0.007	8.54	0.061			Reagent: 032524.12					
GAMMA-TERPINENE	0.007	5.32	0.038			Consumables: 947.110; 04312111; 2	240626; 0000355	309			
LINALOOL	0.007	4.20	0.030			Pipette : DA-065					
SABINENE	0.007	3.92	0.028			Terpenoid testing is performed utilizing Ga	is Chromatography M	lass Spectro	metry. For all	Flower samp	les, the Total Terpenes % is dry-weight corrected.
TRANS-NEROLIDOL	0.005	3.08	0.022								
BORNEOL	0.013	ND	ND								
CAMPHENE	0.007	ND	ND								
CAMPHOR	0.007	ND	ND								
CARYOPHYLLENE OXIDE	0.007	ND	ND								
CEDROL	0.007	ND	ND								
EUCALYPTOL	0.007	ND	ND								
FARNESENE	0.007	ND	ND								
FENCHONE	0.007	ND	ND								
GERANIOL	0.007	ND	ND								
GERANYL ACETATE	0.007	ND	ND								
GUAIOL	0.007	ND	ND								
HEXAHYDROTHYMOL	0.007	ND	ND								
T . I . I . (0/.)			4 000								

4.883 Total (%)

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

FLOWER 14G - 710 JAR 710 Labs Britney's Frozen Lemons #5 710 LABS BRITNEY'S FROZEN LEMONS #5

> Matrix : Flower Type: Flower-Cured

PASSED

Certificate of Analysis

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co

Sample : DA50205012-004 Harvest/Lot ID: 5130293500132672

Sampled: 02/05/25 Ordered: 02/05/25

Batch#: 9255247947092482 Sample Size Received: 2 units Total Amount: 392 units

Completed: 02/08/25 **Expires:** 02/08/26 Sample Method: SOP.T.20.010

Page 3 of 5

Pesticides

PASSEL	ч	A	S		ь	
--------	---	---	---	--	---	--

esticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide		LOD	Units	Action Level	Pass/Fail	Resu
OTAL CONTAMINANT LOAD (PESTICIDES)	0.010		5	PASS	ND	OXAMYL		0.010	ppm	0.5	PASS	ND
OTAL DIMETHOMORPH	0.010		0.2	PASS	ND	PACLOBUTRAZOL		0.010	ppm	0.1	PASS	ND
OTAL PERMETHRIN	0.010		0.1	PASS	ND	PHOSMET		0.010	ppm	0.1	PASS	ND
OTAL PYRETHRINS	0.010		0.5	PASS	ND	PIPERONYL BUTOXIDE		0.010	ppm	3	PASS	ND
OTAL SPINETORAM	0.010		0.2	PASS	ND	PRALLETHRIN		0.010		0.1	PASS	ND
OTAL SPINOSAD	0.010	1.1.	0.1	PASS	ND	PROPICONAZOLE		0.010		0.1	PASS	ND
BAMECTIN B1A	0.010	1.1.	0.1	PASS	ND			0.010		0.1	PASS	ND
CEPHATE	0.010		0.1	PASS	ND	PROPOXUR				0.1	PASS	
CEQUINOCYL	0.010		0.1	PASS	ND	PYRIDABEN		0.010				ND
CETAMIPRID	0.010		0.1	PASS	ND	SPIROMESIFEN		0.010		0.1	PASS	ND
LDICARB	0.010		0.1	PASS	ND	SPIROTETRAMAT		0.010		0.1	PASS	ND
ZOXYSTROBIN	0.010		0.1	PASS	ND	SPIROXAMINE		0.010	ppm	0.1	PASS	ND
FENAZATE	0.010		0.1	PASS	ND	TEBUCONAZOLE		0.010	ppm	0.1	PASS	ND
FENTHRIN	0.010		0.1	PASS	ND	THIACLOPRID		0.010	ppm	0.1	PASS	ND
OSCALID	0.010		0.1	PASS	ND	THIAMETHOXAM		0.010	ppm	0.5	PASS	ND
ARBARYL	0.010		0.5	PASS	ND	TRIFLOXYSTROBIN		0.010	mag	0.1	PASS	ND
ARBOFURAN	0.010		0.1	PASS	ND	PENTACHLORONITROBENZEI	NE (DCNR) *	0.010		0.15	PASS	ND
HLORANTRANILIPROLE	0.010		1	PASS	ND	PARATHION-METHYL *	ar (i ciap)	0.010		0.1	PASS	ND
ILORMEQUAT CHLORIDE	0.010		1	PASS	ND			0.010		0.7	PASS	ND
ILORPYRIFOS	0.010		0.1	PASS	ND	CAPTAN *						
OFENTEZINE	0.010		0.2	PASS	ND	CHLORDANE *		0.010		0.1	PASS	ND
DUMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *		0.010	1.1.	0.1	PASS	ND
MINOZIDE	0.010		0.1	PASS PASS	ND	CYFLUTHRIN *		0.050		0.5	PASS	ND
AZINON	0.010		0.1		ND	CYPERMETHRIN *		0.050	ppm	0.5	PASS	ND
CHLORVOS	0.010		0.1	PASS PASS	ND ND	Analyzed by:	Weight:	Extractio	n date:		Extracted by	
METHOATE	0.010		0.1	PASS	ND ND	3621, 3379, 1440	0.9683g	02/06/25	12:29:03		4640,450,362	1
HOPROPHOS	0.010		0.1	PASS	ND ND	Analysis Method: SOP.T.30.1)2.FL				
OFENPROX	0.010		0.1	PASS	ND ND	Analytical Batch : DA083022F			p-: 1	D-4- .02/00	(DE 00-E0-40	
OXAZOLE	0.010		0.1	PASS	ND	Instrument Used : DA-LCMS-0 Analyzed Date : 02/07/25 11:0			Batch	Date: 02/06	/25 09:59:49	
NHEXAMID			0.1	PASS	ND ND	Dilution : 250	71.73					
NOXYCARB	0.010		0.1	PASS	ND ND	Reagent: 020525.R41; 08102	3.01					
NPYROXIMATE	0.010		0.1	PASS	ND ND	Consumables: 040724CH01;						
PRONIL	0.010		0.1	PASS	ND ND	Pipette: N/A						
ONICAMID	0.010		0.1	PASS	ND ND	Testing for agricultural agents is		g Liquid Chrom	natography T	riple-Quadrupo	le Mass Spectro	netry in
.UDIOXONIL EXYTHIAZOX	0.010		0.1	PASS	ND	accordance with F.S. Rule 64ER						
	0.010		0.1	PASS	ND	Analyzed by: 450, 3379, 1440	Weight:	Extraction			Extracted by: 4640.450.362	
IAZALIL	0.010		0.1	PASS	ND	Analysis Method : SOP.T.30.1	0.9683g	02/06/25 1	12.29:03		4040,430,362	L
IDACLOPRID RESOXIM-METHYL	0.010		0.4	PASS	ND	Analytical Batch : DA083025\		IJI.FL				
ALATHION	0.010		0.1	PASS	ND	Instrument Used : DA-GCMS-(Batch D	ate:02/06/25	10:01:59	
	0.010		0.2	PASS	ND	Analyzed Date : 02/07/25 10:						
TALAXYL	0.010		0.1	PASS	ND	Dilution: 250						
THIOCARB			0.1	PASS	ND ND	Reagent: 020525.R41; 08102						
THOMYL	0.010			PASS		Consumables: 040724CH01;		601				
EVINPHOS YCLOBUTANIL	0.010 0.010		0.1		ND	Pipette : DA-080; DA-146; DA		0 0				
		IIIII	U.I	PASS	ND	Testing for agricultural agents is	s pertormed utilizin	a Gas Chromat	ography Trip	ne-c)uadrunole	mass Spectrome	rrv in

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

FLOWER 14G - 710 JAR 710 Labs Britney's Frozen Lemons #5 710 LABS BRITNEY'S FROZEN LEMONS #5

Matrix: Flower Type: Flower-Cured

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co

Sample : DA50205012-004 Harvest/Lot ID: 5130293500132672

Batch#: 9255247947092482 Sample Size Received: 2 units Sampled: 02/05/25 Ordered: 02/05/25

Total Amount: 392 units Completed: 02/08/25 Expires: 02/08/26 Sample Method: SOP.T.20.010

Page 4 of 5

Batch Date: 02/06/25 10:01:31

Microbial

Batch Date: 02/06/25 09:13:29

PASSED

Analyte	LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS TERREUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
SALMONELLA SPECIFIC GENE			Not Present	PASS	
ECOLI SHIGELLA			Not Present	PASS	-
TOTAL YEAST AND MOLD	10	CFU/g	1030	PASS	100000

Analyzed by: 4531, 4044, 3379, 1440 Weight: **Extraction date:** Extracted by: 0.9435g 02/06/25 10:34:20 4044,4571

Analysis Method : SOP.T.40.056C, SOP.T.40.058.FL, SOP.T.40.209.FL Analytical Batch : DA083008MIC

Instrument Used : PathogenDx Scanner DA-111,Applied Biosystems Batch Date: 02/06/25 2720 Thermocycler DA-010, Fisher Scientific Isotemp Heat Block

(95*C) DA-049,DA-402 Thermo Scientific Heat Block (55 C)

Analyzed Date : 02/07/25 19:25:23

Dilution: 10

Reagent: 012525.02; 111524.84; 011525.R47; 080724.12

Consumables: 7578003088

Pipette : N/A

Analyzed by: 4531, 3379, 1440	Weight: 0.9435g	Extraction date: 02/06/25 10:34:20	Extracted by: 4044.4571

Analysis Method : SOP.T.40.209.FL Analytical Batch : DA083009TYM

Instrument Used: Incubator (25*C) DA- 328 [calibrated with DA-3821

Analyzed Date: 02/08/25 14:39:35

Dilution: 10

Reagent: 012525.02; 111524.84; 013025.R13; 110724.R13

Consumables : N/A Pipette: N/A

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

\mathcal{L}_{∞}	Mycotoxins			
nalyte		LOD	Units	Res
LATOXIN	B2	0.002	ppm	1

	Analyte		LOD	Units	Result	Pass / Fail	Action Level
	AFLATOXIN B2		0.002	ppm	ND	PASS	0.02
	AFLATOXIN B1		0.002	ppm	ND	PASS	0.02
	OCHRATOXIN A		0.002	ppm	ND	PASS	0.02
	AFLATOXIN G1		0.002	ppm	ND	PASS	0.02
	AFLATOXIN G2		0.002	ppm	ND	PASS	0.02
)	Analyzed by: 3621, 3379, 1440	Weight: 0.9683g	Extraction date: 02/06/25 12:29			acted by: 0,450,362	1

Analysis Method: SOP.T.30.102.FL, SOP.T.40.102.FL

Analytical Batch : DA083024MYC Instrument Used : N/A

Analyzed Date : 02/07/25 08:49:16

Dilution: 250

Reagent: 020525.R41; 081023.01 Consumables: 040724CH01; 221021DD

Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Heavy Metals

PASSED

Metal		LOD	Units	Result	Pass / Fail	Action Level	
TOTAL CONTAMINANT LOAD	METALS	0.080	ppm	ND	PASS	1.1	
ARSENIC		0.020	ppm	ND	PASS	0.2	
CADMIUM		0.020	ppm	ND	PASS	0.2	
MERCURY		0.020	ppm	ND	PASS	0.2	
LEAD		0.020	ppm	ND	PASS	0.5	
Analyzed by	Woight	Extraction	datai		Evtractor	Lbva	

1022, 4056, 3379, 1440 0.2789g 02/06/25 11:33:36 1022.4056

Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL Analytical Batch : DA083017HEA

Instrument Used: DA-ICPMS-004 Batch Date: 02/06/25 09:50:16 Analyzed Date: 02/07/25 08:47:55

Dilution: 50

Reagent: 012925.R32; 013025.R04; 020325.R06; 020325.R03; 020325.R04; 020325.R05; 120324.07; 013125.R04

Consumables: 040724CH01; J609879-0193; 179436

Pipette: DA-061: DA-191: DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs FLOWER 14G - 710 JAR 710 Labs Britney's Frozen Lemons #5 710 LABS BRITNEY'S FROZEN LEMONS #5 Matrix : Flower Type: Flower-Cured

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co

Sample : DA50205012-004 Harvest/Lot ID: 5130293500132672

Sampled: 02/05/25 Ordered: 02/05/25

Batch#: 9255247947092482 Sample Size Received: 2 units Total Amount: 392 units Completed: 02/08/25 Expires: 02/08/26 Sample Method: SOP.T.20.010

Page 5 of 5

Filth/Foreign **Material**

PASSED

Dilution: N/A

Pipette: DA-066

Analysis Method: SOP.T.40.021

Analyzed Date: 02/07/25 17:06:35

Reagent: 092520.50; 120324.07

Analytical Batch: DA083043MOI Instrument Used: DA-003 Moisture Analyzer

Moisture

PASSED

Batch Date: 02/06/25 10:43:32

Analyte LOD Units Result P/F Action Level Analyte LOD Units Result P/F **Action Level** Filth and Foreign Material 0.100 % ND PASS 1 **Moisture Content** 1.0 14.8 PASS 15 % Analyzed by: 1879, 3379, 1440 Extraction date: Analyzed by: 4797, 3379, 1879, 1440 Extraction date Weight: Extracted by: 1g 02/07/25 10:13:54 1879 0.508g 02/06/25 14:50:34 4797

Analysis Method: SOP.T.40.090

Analytical Batch : DA083049FIL
Instrument Used : Filth/Foreign Material Microscope

Analyzed Date : 02/07/25 11:44:47

Dilution: N/AReagent: N/A Consumables : N/A Pipette: N/A

Batch Date: 02/06/25 13:33:17

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Batch Date: 02/06/25 10:51:51

Moisture Content analysis utilizing loss-on-drying technology in accordance with F.S. Rule 64ER20-39

Water Activity

Analyte	LC	DD Units	Result	P/F	Action Leve
Water Activity	0.	010 aw	0.542	PASS	0.65
Analyzed by:	Weight:	Extraction			tracted by:

Analysis Method: SOP.T.40.019 Analytical Batch: DA083047WAT

Instrument Used : DA-028 Rotronic Hygropalm

Analyzed Date: 02/06/25 15:19:31

Dilution: N/A Reagent: 101724.36 Consumables : PS-14 Pipette: N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164