

Kaycha Labs

710 Labs Live Rosin Badder 2.5g - Jokerz #15

Jokerz #15

Matrix: Derivative Type: Live Badder

Certificate of Analysis

COMPLIANCE FOR RETAIL

Sample:DA40411012-008

Harvest/Lot ID: 20240208-710JOK15-F6H11

Batch#: 1000201630

Cultivation Facility: Homestead Processing Facility: Homestead Source Facility: Homestead

Seed to Sale# LFG-00003806

Batch Date: 04/09/24

Sample Size Received: 17.5 gram Total Amount: 237 units

Retail Product Size: 2.5 gram

Retail Serving Size: 2.5 gram

Servings: 1 Ordered: 04/11/24

Sampled: 04/11/24 Completed: 04/15/24

Sampling Method: SOP.T.20.010

PASSED

Apr 15, 2024 | The Flowery

Samples From: Homestead, FL, 33090, US **#FLOWERY**

Pages 1 of 6

SAFETY RESULTS

Pesticides **PASSED**

Heavy Metals **PASSED**

PASSED

PASSED

Residuals Solvents **PASSED**

PASSED

Water Activity **PASSED**

Moisture **NOT TESTED**

Terpenes TESTED

PASSED

Cannabinoid

Total THC

Total THC/Container: 1940.90 mg

Total CBD

Reviewed On: 04/15/24 08:38:11 Batch Date: 04/12/24 08:34:41

Total Cannabinoids

Total Cannabinoids/Container: 2325.58

	D9-THC	THCA	CBD	CBDA	D8-THC	CBG	CBGA	CBN	THCV	CBDV	СВС
%	10.517	76.533	ND	0.214	0.072	1.009	4.456	ND	ND	ND	0.222
mg/unit	262.93	1913.33	ND	5.35	1.80	25.23	111.40	ND	ND	ND	5.55
LOD	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	%	%	%	%	%	%	%	%	%	%	%
alyzed by: 35, 1665, 585,	, 1440			Weight: 0.093g		Extraction date: 04/12/24 13:16:30)			Extracted by: 3335	

Analysis Method: SOP.T.40.031, SOP.T.30.031

Analytical Batch: DAO71546POT Instrument Used: DA-LC-003 Analyzed Date: 04/12/24 13:20:13

Dilution: 400
Reagent: 032924.R01; 121321.34; 031524.R01
Consumables: 947.109; 280670723; CE0123; R1KB14270
Pipette: DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

710 Labs Live Rosin Badder 2.5g - Jokerz #15

Jokerz #15 Matrix: Derivative

Type: Live Badder

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Email: brian@theflowerv.co

Sample : DA40411012-008

Harvest/Lot ID: 20240208-710JOK15-F6H11

Batch#:1000201630 Sampled: 04/11/24 Ordered: 04/11/24

Sample Size Received: 17.5 gram Total Amount: 237 units Completed: 04/15/24 Expires: 04/15/25 Sample Method: SOP.T.20.010

Page 2 of 6

Terpenes

TESTED

Terpenes	LOD (%)	mg/unit	t %	Result (%)		Terpenes		LOD (%)	mg/unit	: %	Result (%)
TOTAL TERPENES	0.007	147.75	5.910			VALENCENE		0.007	ND	ND	
LIMONENE	0.007	41.55	1.662			ALPHA-CEDRENE		0.007	ND	ND	
BETA-CARYOPHYLLENE	0.007	39.38	1.575			ALPHA-PHELLANDRENE		0.007	ND	ND	
BETA-MYRCENE	0.007	18.33	0.733			ALPHA-TERPINENE		0.007	ND	ND	
ALPHA-HUMULENE	0.007	12.63	0.505			ALPHA-TERPINOLENE		0.007	ND	ND	
LINALOOL	0.007	12.50	0.500			CIS-NEROLIDOL		0.007	ND	ND	
BETA-PINENE	0.007	6.33	0.253			GAMMA-TERPINENE		0.007	ND	ND	
FENCHYL ALCOHOL	0.007	4.43	0.177			TRANS-NEROLIDOL		0.007	ND	ND	
ALPHA-PINENE	0.007	3.98	0.159			Analyzed by:	Weight:		Extraction of	late:	Extracted by:
ALPHA-TERPINEOL	0.004	3.78	0.151			3605, 585, 1440	0.2128g		04/12/24 14		3605
ALPHA-BISABOLOL	0.007	2.73	0.109			Analysis Method: SOP.T.30.061A.FL, S	SOP.T.40.061A.FL				
GERANIOL	0.007	1.20	0.048			Analytical Batch : DA071553TER					04/15/24 09:49:28
CAMPHENE	0.007	0.95	0.038			Instrument Used : DA-GCMS-009 Analyzed Date : 04/12/24 14:01:29			Batc	h Date : U	4/12/24 09:52:16
3-CARENE	0.007	ND	ND		i i	Dilution: 10					
BORNEOL	0.013	ND	ND			Reagent : 022224.01					
CAMPHOR	0.007	ND	ND			Consumables: 230613-634-D; CE0123	3; R1KB14270				
CARYOPHYLLENE OXIDE	0.007	ND	ND			Pipette : DA-063					
CEDROL	0.007	ND	ND			Terpenoid testing is performed utilizing Ga-	s Chromatography N	lass Specti	rometry. For all	Flower san	nples, the Total Terpenes % is dry-weight corrected.
EUCALYPTOL	0.007	ND	ND								
FARNESENE	0.001	ND	ND								
FENCHONE	0.007	ND	ND								
GERANYL ACETATE	0.007	ND	ND								
GUAIOL	0.007	ND	ND								
HEXAHYDROTHYMOL	0.007	ND	ND								
ISOBORNEOL	0.007	ND	ND								
ISOPULEGOL	0.007	ND	ND								
NEROL	0.007	ND	ND								
OCIMENE	0.007	ND	ND								
PULEGONE	0.007	ND	ND								
SABINENE	0.007	ND	ND								
SABINENE HYDRATE	0.007	ND	ND								
Total (%)			5.910								

Vivian Celestino Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Signature 04/15/24

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Kaycha Labs

710 Labs Live Rosin Badder 2.5g - Jokerz #15

Jokerz #15 Matrix: Derivative

Type: Live Badder

Certificate of Analysis

Sample : DA40411012-008

Batch#:1000201630 Sampled: 04/11/24 Ordered: 04/11/24

Harvest/Lot ID: 20240208-710JOK15-F6H11

Sample Size Received: 17.5 gram Total Amount: 237 units Completed: 04/15/24 Expires: 04/15/25 Sample Method: SOP.T.20.010

PASSED

Page 3 of 6

Samples From: Homestead, FL, 33090, US

Telephone: (321) 266-2467

Fmail: hrian@theflowerv.co

Pesticides

PASSED

	Level			Pesticide		LOD	Units	Action Level	Pass/Fail	Resu
				OXAMYL		0.010	ppm	0.5	PASS	ND
				PACLOBUTRAZOL		0.010	ppm	0.1	PASS	ND
				PHOSMET		0.010	ppm	0.1	PASS	ND
				PIPERONYL BUTOXIDE		0.010	ppm	3	PASS	ND
				PRALI ETHRIN		0.010	ppm	0.1	PASS	ND
								0.1	PASS	ND
										ND
										ND
										ND
				SPIROTETRAMAT		0.010	ppm			ND
				SPIROXAMINE		0.010	ppm	0.1		ND
				TEBUCONAZOLE		0.010	ppm	0.1	PASS	ND
				THIACLOPRID		0.010	ppm	0.1	PASS	ND
				THIAMETHOXAM		0.010	ppm	0.5	PASS	ND
				TRIFLOXYSTROBIN		0.010	ppm	0.1	PASS	ND
					(PCNR) *			0.15	PASS	ND
	_				(. CIAD)					ND
										ND
										ND
										ND
				CYFLUTHRIN *		0.050	PPM	0.5	PASS	ND
				CYPERMETHRIN *		0.050	PPM	0.5	PASS	ND
				Analyzed by:	Weight:	Extraction	on date:		Extracted I	ov:
				3379, 585, 1440	0.2999g	04/12/24	16:53:41		450,3379	•
					FL (Gainesville)), SOP.T.30.10	2.FL (Davie)	SOP.T.40.101	FL (Gainesville),
					(FES)		Daten Date	: 104/12/24 10	.20.03	
					08					
				Consumables: 326250IW						
11.11				Pipette: N/A						
						g Liquid Chrom	natography T	riple-Quadrupo	le Mass Spectror	netry in
										y:
				, ,) SODT 40 15		
				Analyzed Date : 04/12/24 17:12:	32					
				Dilution: 250						
						5; 031824.R06				
	0.1			Consumables: 326250IW; 1472 Pipette: DA-080; DA-146; DA-21						
		PASS	ND							
0.010 0.010	0.010 ppm	0.010 ppm 5 0.010 ppm 0.2 0.010 ppm 0.1 0.010 ppm 0.5 0.010 ppm 0.1 0.100 ppm 0.1			Continue	Continue		Level	Level	Cevel

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

710 Labs Live Rosin Badder 2.5g - Jokerz #15

Jokerz #15
Matrix : Derivative
Type: Live Badder

Certificate of Analysis

PASSED

The Flowery

Samples From: Homestead, FL, 33090, US **Telephone:** (321) 266-2467 **Email:** brian@theflowerv.co Sample : DA40411012-008

Harvest/Lot ID: 20240208-710JOK15-F6H11

Batch#: 1000201630 Sampled: 04/11/24 Ordered: 04/11/24 Sample Size Received: 17.5 gram
Total Amount: 237 units
Completed: 04/15/24 Expires: 04/15/25
Sample Method: SOP.T.20.010

Page 4 of 6

Residual Solvents

PASSED

Solvents	LOD	Units	Action Level	Pass/Fail	Result	
1,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND	
1,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND	
ACETONE	75.000	ppm	750	PASS	ND	
DICHLOROMETHANE	12.500	ppm	125	PASS	ND	
BENZENE	0.100	ppm	1	PASS	ND	
2-PROPANOL	50.000	ppm	500	PASS	ND	
CHLOROFORM	0.200	ppm	2	PASS	ND	
ETHANOL	500.000	ppm	5000	PASS	ND	
ETHYL ACETATE	40.000	ppm	400	PASS	ND	
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND	
ACETONITRILE	6.000	ppm	60	PASS	ND	
ETHYL ETHER	50.000	ppm	500	PASS	ND	
ETHYLENE OXIDE	0.500	ppm	5	PASS	ND	
HEPTANE	500.000	ppm	5000	PASS	ND	
METHANOL	25.000	ppm	250	PASS	ND	
N-HEXANE	25.000	ppm	250	PASS	ND	
PENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND	
TOLUENE	15.000	ppm	150	PASS	ND	
TOTAL XYLENES	15.000	ppm	150	PASS	ND	
PROPANE	500.000	ppm	5000	PASS	ND	
TRICHLOROETHYLENE	2.500	ppm	25	PASS	ND	
Analyzed by: 850, 585, 1440	Weight: 0.0245g	Extraction date: 04/15/24 09:01:29			Extracted by: 850	

Analysis Method: SOP.T.40.041.FL
Analytical Batch: DA071588SOL

Instrument Used: DA-GCMS-002 Analyzed Date: 04/15/24 08:57:38

Dilution: 1 Reagent: 030420.09

Consumables : 429651; 304486 **Pipette :** DA-309 25 uL Syringe 35028

Reviewed On: 04/15/24 10:18:35 Batch Date: 04/12/24 16:30:59

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

pass/fail does not include the MU. Any calculated totals may contain rounding errors

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Vivian Celestino

Lab Director

Kaycha Labs

710 Labs Live Rosin Badder 2.5g - Jokerz #15

lokerz #15

Matrix: Derivative Type: Live Badder

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co

Sample : DA40411012-008

Harvest/Lot ID: 20240208-710IOK15-F6H11

Batch#: 1000201630 Sampled: 04/11/24 Ordered: 04/11/24

Sample Size Received: 17.5 gram Total Amount: 237 units Completed: 04/15/24 Expires: 04/15/25 Sample Method: SOP.T.20.010

Page 5 of 6

Microbial

Analyte	LOD	Units	Result	Pass / Fail	Action Level	
ASPERGILLUS TERREUS			Not Present	PASS		
ASPERGILLUS NIGER			Not Present	PASS		
ASPERGILLUS FUMIGATUS			Not Present	PASS		
ASPERGILLUS FLAVUS			Not Present	PASS		
SALMONELLA SPECIFIC GENE			Not Present	PASS		
ECOLI SHIGELLA			Not Present	PASS		-
TOTAL YEAST AND MOLD	10	CFU/g	<10	PASS	100000	

Analyzed by: Weight: **Extraction date:** Extracted by: 3390, 585, 1440 04/12/24 13:57:56 1.07g

Analysis Method: SOP.T.40.056C. SOP.T.40.058.FL. SOP.T.40.209.FL

Analytical Batch: DA071554MIC

Reviewed On: 04/15/24

Batch Date: 04/12/24

Instrument Used: PathogenDx Scanner DA-111.fisherbrand Isotemp Heat Block DA-020,fisherbrand Isotemp Heat Block

DA-049, Fisher Scientific Isotemp Heat Block DA-021

Analyzed Date: 04/15/24 15:04:01

Reagent: 032624.33; 032624.34; 041124.R11; 091523.44 Consumables: 7569004010

Pipette: N/A

Analyzed by:	Weight:	Extraction date:	Extracted by:
3390, 4451, 585, 1440	1.07a	04/12/24 13:57:56	3390

Analysis Method: SOP.T.40.208 (Gainesville), SOP.T.40.209.FL

Analytical Batch : DA071556TYM **Reviewed On:** 04/15/24 08:37:43 Instrument Used : Incubator (25-27*C) DA-096 Batch Date: 04/12/24 10:05:17

Analyzed Date : 04/12/24 18:40:20 Dilution: N/A

Reagent: 032624.33; 032624.34; 031824.R19

Consumables : N/A Pipette: N/A

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

	Mycotoxins	rycotoxins				
Analyte		LOD	Units	Result	Pass / Fail	Action Level
AFLATOXIN B	2	0.002	ppm	ND	PASS	0.02
AFLATOXIN B	1	0.002	ppm	ND	PASS	0.02

					Fail	Level
AFLATOXIN B2		0.002	ppm	ND	PASS	0.02
AFLATOXIN B1		0.002	ppm	ND	PASS	0.02
OCHRATOXIN A		0.002	ppm	ND	PASS	0.02
AFLATOXIN G1		0.002	ppm	ND	PASS	0.02
AFLATOXIN G2		0.002	ppm	ND	PASS	0.02
Analyzed by:	Weight:	Extraction dat	Extracted by:			
3379, 585, 1440	0.2999g	04/12/24 16:5	450,3379			

Analysis Method: SOP.T.30.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville). SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie)

Analytical Batch: DA071563MYC

Reviewed On: 04/15/24 08:39:33 Instrument Used : N/A Batch Date: 04/12/24 10:29:53

Analyzed Date : N/A

Dilution: 250

Reagent: 032624.R12; 040423.08 Consumables: 326250IW

Pipette: N/A

Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Heavy Metals

PASSED

Metal	LOD	Units	Result	Pass / Fail	Action Level
TOTAL CONTAMINANT LOAD METALS	0.080	ppm	ND	PASS	1.1
ARSENIC	0.020	ppm	ND	PASS	0.2
CADMIUM	0.020	ppm	ND	PASS	0.2
MERCURY	0.020	ppm	ND	PASS	0.2
LEAD	0.020	ppm	ND	PASS	0.5

Analyzed by: 1022, 585, 1440 Extraction date: 04/12/24 11:37:56 0.2496g 1022.4056

Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL

Analytical Batch : DA071565HEA Instrument Used : DA-ICPMS-004 Reviewed On: 04/15/24 08:46:44 Batch Date: 04/12/24 10:37:35 Analyzed Date : 04/12/24 16:20:16

Dilution: 50

Reagent: 032824.R05; 032524.R03; 040524.R11; 040824.R16; 040824.R17; 020524.01;

Consumables: 179436: 34623011: 210508058

Pipette: DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for

pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

710 Labs Live Rosin Badder 2.5g - Jokerz #15

lokerz #15 Matrix: Derivative

Type: Live Badder

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co

Sample : DA40411012-008

Harvest/Lot ID: 20240208-710JOK15-F6H11

Batch#: 1000201630 Sampled: 04/11/24 Ordered: 04/11/24

Sample Size Received: 17.5 gram Total Amount: 237 units Completed: 04/15/24 Expires: 04/15/25 Sample Method: SOP.T.20.010

Page 6 of 6

Filth/Foreign **Material**

PASSED

Reviewed On: 04/12/24 23:57:22 Batch Date: 04/12/24 23:30:27

Reviewed On: 04/15/24 08:48:03

Batch Date: 04/12/24 11:50:39

Analyte LOD Units Result P/F **Action Level** Filth and Foreign Material 0.100 % ND PASS 1

Analyzed by: 1879, 585, 1440 Weight: NA N/A N/A

Analysis Method: SOP.T.40.090

Analytical Batch : DA071590FIL
Instrument Used : Filth/Foreign Material Microscope

Analyzed Date: 04/12/24 23:34:51

Dilution: N/AReagent: N/A Consumables : N/A Pipette: N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Water Activity

Analyte Water Activity	LOD 0.010	Units aw	Result 0.496	P/F PASS	Action Level 0.85	
Analyzed by: 4056, 1879, 585, 1440	Weight: 0.436g		on date: 4 23:36:33		Extracted by: 1879	

Analysis Method: SOP.T.40.019 Analytical Batch: DA071579WAT

Instrument Used : DA-028 Rotronic Hygropalm

Analyzed Date: 04/12/24 16:29:20

Reagent : N/A Consumables : N/A Pipette: N/A

Dilution : N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

Vivian Celestino Lab Director

State License # CMTL-0002

ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164