

COMPLIANCE FOR RETAIL

Kaycha Labs

710 Labs Persy Rosin 1g - Cake Crasher

Cake Crasher Matrix: Derivative Type: Live Rosin

Sample:DA40304003-009 Harvest/Lot ID: 20231221-710CC-FL3H3

Batch#: 1000186645

Cultivation Facility: Homestead Processing Facility: Homestead Source Facility: Homestead Seed to Sale# LFG-00003381

Batch Date: 03/01/24

Sample Size Received: 16 gram
Total Amount: 451 units
Retail Product Size: 1 gram

Ordered: 03/04/24 Sampled: 03/04/24

Completed: 03/08/24 Revision Date: 03/11/24

Sampling Method: SOP.T.20.010

Mar 11, 2024 | The Flowery

Samples From: Homestead, FL, 33090, US

#FLOWERY

PASSED

Pages 1 of 6

PRODUCT IMAGE

SAFETY RESULTS

Pesticides

Heavy Metals PASSED

Certificate of Analysis

Mycotoxins

PASSED

Water Activity
PASSED

Moisture NOT TESTED

MISC.

FESTED

Cannabinoid

PASSED

Total THC

Total THC/Container: 713.86 mg

Total CBD **0.180**%

Total CBD/Container : 1.80 mg

Total Cannabinoids 85.333%

Total Cannabinoids/Container: 853.33 mg

	-									
	-									
				_						
										CBC
0.408	80.933	ND	0.206	0.029	0.361	3.231	ND	ND	ND	0.165
4.08	809.33	ND	2.06	0.29	3.61	32.31	ND	ND	ND	1.65
0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
%	%	%	%	%	%	%	%	%	%	%
1440			Weight: 0.1075q		Extraction date: 03/06/24 14:12:26				Extracted by: 3335	
	0.001 %	0.408 80.933 4.08 809.33 0.001 0.001 % %	0.408 80.933 ND 4.08 809.33 ND 0.001 0.001 0.001 % %	0.408 80.933 ND 0.206 4.08 809.33 ND 2.06 0.001 0.001 0.001 0.001 % % % Weight:	0.408 80.933 ND 0.206 0.029 4.08 809.33 ND 2.06 0.29 0.001 0.001 0.001 0.001 0.001 % % % %	0.408 80.933 ND 0.206 0.029 0.361 4.08 809.33 ND 2.06 0.29 3.61 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % Weight: Extraction date:	0.408 80.933 ND 0.206 0.029 0.361 3.231 4.08 809.33 ND 2.06 0.29 3.61 32.31 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % Weight: Extraction date:	0.408 80.933 ND 0.206 0.029 0.361 3.231 ND 4.08 809.33 ND 2.06 0.29 3.61 32.31 ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % Weight: Extraction date:	0.408 80.933 ND 0.206 0.029 0.361 3.231 ND ND 4.08 809.33 ND 2.06 0.29 3.61 32.31 ND ND 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 % % % % % % %	0.408 80.933 ND 0.206 0.029 0.361 3.231 ND ND ND 4.08 809.33 ND 2.06 0.29 3.61 32.31 ND ND ND 0.001

Analysis Method: SOP.T.40.031, SOP.T.30.031
Analytical Batch: DA070149POT

Analytical Batch: DA070149POT Instrument Used: DA-LC-003 Analyzed Date: 03/06/24 14:14:08

Dilution: 400

Reagent: 022824.R30; 060723.24; 021424.R02 Consumables: 947.109; 34623011; CE0123; R1KB14270

Pipette : DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

Vivian Celestino

Lab Director

Reviewed On: 03/07/24 15:39:51

Batch Date: 03/06/24 10:00:39

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164 nature

Revision: #1 - Updated Strain Name

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Kaycha Labs

710 Labs Persy Rosin 1g - Cake Crasher

Matrix: Derivative

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Email: brian@theflowerv.co Sample : DA40304003-009

Harvest/Lot ID: 20231221-710CC-FL3H3

Batch#:1000186645 Sampled: 03/04/24 Ordered: 03/04/24

Sample Size Received: 16 gram Total Amount : 451 units Completed: 03/08/24 Expires: 03/11/25 Sample Method: SOP.T.20.010

Page 2 of 6

Terpenes

TESTED

Terpenes	LOD (%)	mg/un	it %	Result (%)	Terpenes	LOD (%)	mg/unit	: %	Result (%)
TOTAL TERPENES	0.007	68.08	6.808		SABINENE HYDRATE	0.007	ND	ND	
LIMONENE	0.007	24.62	2.462		VALENCENE	0.007	ND	ND	
BETA-CARYOPHYLLENE	0.007	15.57	1.557		ALPHA-CEDRENE	0.007	ND	ND	
LINALOOL	0.007	4.75	0.475		ALPHA-PHELLANDRENE	0.007	ND	ND	
ALPHA-HUMULENE	0.007	3.95	0.395		ALPHA-TERPINENE	0.007	ND	ND	
ALPHA-PINENE	0.007	3.87	0.387		CIS-NEROLIDOL	0.007	ND	ND	
BETA-PINENE	0.007	3.50	0.350		GAMMA-TERPINENE	0.007	ND	ND	
OCIMENE	0.007	2.20	0.220		TRANS-NEROLIDOL	0.007	ND	ND	
GUAIOL	0.007	2.06	0.206		Analyzed by:	Weight:	Extracti	ion date:	Extracted by:
BETA-MYRCENE	0.007	1.77	0.177		795, 1665, 53, 1440	0.3845g		4 23:02:16	
FENCHYL ALCOHOL	0.007	1.51	0.151		Analysis Method : SOP.T.30.061A.FL, So	OP.T.40.061A.FL			
ALPHA-BISABOLOL	0.007	1.08	0.108		Analytical Batch : DA070101TER				3/08/24 09:14:15
TOTAL TERPINEOL	0.007	1.06	0.106		Instrument Used: DA-GCMS-004 Analyzed Date: N/A		Batci	h Date : 03/	05/24 13:51:31
CAMPHENE	0.007	0.59	0.059		Dilution: 10				
BORNEOL	0.013	0.50	0.050		Reagent : N/A				
FENCHONE	0.007	0.40	0.040		Consumables : N/A				
ALPHA-TERPINOLENE	0.007	0.33	0.033		Pipette : N/A				
CARYOPHYLLENE OXIDE	0.007	0.32	0.032		Terpenoid testing is performed utilizing Gas	Chromatography Mass Spectro	metry. For all	Flower samp	oles, the Total Terpenes % is dry-weight corrected.
3-CARENE	0.007	ND	ND						
CAMPHOR	0.007	ND	ND						
CEDROL	0.007	ND	ND						
EUCALYPTOL	0.007	ND	ND						
FARNESENE	0.001	ND	ND						
GERANIOL	0.007	ND	ND						
GERANYL ACETATE	0.007	ND	ND						
HEXAHYDROTHYMOL	0.007	ND	ND						
ISOBORNEOL	0.007	ND	ND						
ISOPULEGOL	0.007	ND	ND						
NEROL	0.007	ND	ND						
PULEGONE	0.007	ND	ND						
SABINENE	0.007	ND	ND						
Total (%)			6.808						

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

03/08/24

Revision: #1 - Updated Strain Name

Kaycha Labs

710 Labs Persy Rosin 1g - Cake Crasher

Cake Crasher Matrix : Derivative

Matrix : Derivative Type: Live Rosin

Certificate of Analysis

PASSED

The Flowery

Samples From: Homestead, FL, 33090, US **Telephone:** (321) 266-2467 **Email:** brian@theflowery.co Sample : DA40304003-009

Harvest/Lot ID: 20231221-710CC-FL3H3

Batch#: 1000186645 Sampled: 03/04/24 Ordered: 03/04/24 Sample Size Received: 16 gram
Total Amount: 451 units
Completed: 03/08/24 Expires: 03/11/25
Sample Method: SOP.T.20.010

Page 3 of 6

Pesticides

PASSED

esticide	LOD	Units	Action Level	Pass/Fail	Result	Pesticide	LOD	Units	Action Level	Pass/Fail	Resu
OTAL CONTAMINANT LOAD (PESTICIDES)	0.010	1.1.	5	PASS	ND	OXAMYL	0.010	ppm	0.5	PASS	ND
OTAL DIMETHOMORPH	0.010		0.2	PASS	ND	PACLOBUTRAZOL	0.010	ppm	0.1	PASS	ND
OTAL PERMETHRIN	0.010		0.1	PASS	ND	PHOSMET	0.010	ppm	0.1	PASS	ND
OTAL PYRETHRINS	0.010	P. P.	0.5	PASS	ND	PIPERONYL BUTOXIDE		ppm	3	PASS	ND
OTAL SPINETORAM	0.010		0.2	PASS	ND	PRALLETHRIN		ppm	0.1	PASS	ND
OTAL SPINOSAD	0.010	ppm	0.1	PASS	ND				0.1	PASS	ND
BAMECTIN B1A	0.010	ppm	0.1	PASS	ND	PROPICONAZOLE		ppm			
CEPHATE	0.010	ppm	0.1	PASS	ND	PROPOXUR		ppm	0.1	PASS	ND
CEQUINOCYL	0.010	ppm	0.1	PASS	ND	PYRIDABEN	0.010	ppm	0.2	PASS	ND
ETAMIPRID	0.010	ppm	0.1	PASS	ND	SPIROMESIFEN	0.010	ppm	0.1	PASS	ND
DICARB	0.010		0.1	PASS	ND	SPIROTETRAMAT	0.010	ppm	0.1	PASS	ND
OXYSTROBIN	0.010	ppm	0.1	PASS	ND	SPIROXAMINE	0.010	ppm	0.1	PASS	ND
FENAZATE	0.010		0.1	PASS	ND	TEBUCONAZOLE	0.010	ppm	0.1	PASS	ND
FENTHRIN	0.010		0.1	PASS	ND	THIACLOPRID		ppm	0.1	PASS	ND
SCALID	0.010		0.1	PASS	ND	THIAMETHOXAM		ppm	0.5	PASS	ND
RBARYL	0.010		0.5	PASS	ND	TRIFLOXYSTROBIN		ppm	0.1	PASS	ND
RBOFURAN	0.010		0.1	PASS	ND		0.010		0.15	PASS	ND
LORANTRANILIPROLE	0.010		1	PASS	ND	PENTACHLORONITROBENZENE (PCNB) *					
LORMEQUAT CHLORIDE	0.010	ppm	1	PASS	ND	PARATHION-METHYL *		PPM	0.1	PASS	ND
LORPYRIFOS	0.010	ppm	0.1	PASS	ND	CAPTAN *	0.070		0.7	PASS	ND
OFENTEZINE	0.010	ppm	0.2	PASS	ND	CHLORDANE *	0.010	PPM	0.1	PASS	ND
UMAPHOS	0.010		0.1	PASS	ND	CHLORFENAPYR *	0.010	PPM	0.1	PASS	ND
MINOZIDE	0.010	ppm	0.1	PASS	ND	CYFLUTHRIN *	0.050	PPM	0.5	PASS	ND
AZINON	0.010	ppm	0.1	PASS	ND	CYPERMETHRIN *	0.050	PPM	0.5	PASS	ND
CHLORVOS	0.010	1.1.	0.1	PASS	ND	Analyzed by: Weight:	Ev	traction da	to	Extracto	ad by
METHOATE	0.010	ppm	0.1	PASS	ND	3379, 53, 1665, 1440 0.2524q		/06/24 17:4		3379	eu by.
HOPROPHOS	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.101.FL (Gainesville),).
OFENPROX	0.010	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)					
OXAZOLE	0.010	ppm	0.1	PASS	ND	Analytical Batch : DA070127PES			On:03/07/24		
NHEXAMID	0.010	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-003 (PES)		Batch Dat	e:03/06/24 09	:02:31	
NOXYCARB	0.010	ppm	0.1	PASS	ND	Analyzed Date : 03/06/24 18:04:32					
NPYROXIMATE	0.010	ppm	0.1	PASS	ND	Dilution: 250 Reagent: 030624.R05; 030624.R03; 030324.R03	· 030634 B4	M · 021324 I	202-030624 84	11. 040423 00	
PRONIL	0.010		0.1	PASS	ND	Consumables: 326250IW	, 030024.RI	, UZ 13Z4.I	103, 030024.RI	11, 040423.00	
ONICAMID	0.010	ppm	0.1	PASS	ND	Pipette: DA-093; DA-094; DA-219					
UDIOXONIL	0.010	ppm	0.1	PASS	ND	Testing for agricultural agents is performed utilizing	Liquid Chron	natography ¹	Friple-Quadrupo	le Mass Spectror	netry in
XYTHIAZOX	0.010	ppm	0.1	PASS	ND	accordance with F.S. Rule 64ER20-39.		,			
AZALIL	0.010	ppm	0.1	PASS	ND	Analyzed by: Weight:		raction dat		Extracte	ed by:
IDACLOPRID	0.010	ppm	0.4	PASS	ND	450, 53, 1665, 1440 0.2524g		06/24 17:46		3379	
ESOXIM-METHYL	0.010	ppm	0.1	PASS	ND	Analysis Method : SOP.T.30.151.FL (Gainesville),					
LATHION	0.010	ppm	0.2	PASS	ND	Analytical Batch : DA070129VOL Instrument Used : DA-GCMS-010			:03/07/24 16: 03/06/24 09:04		
TALAXYL	0.010	ppm	0.1	PASS	ND	Analyzed Date: 03/06/24 18:27:05	В	accii Date :	03/00/24 09:04		
THIOCARB	0.010	ppm	0.1	PASS	ND	Dilution: 250					
THOMYL	0.010	ppm	0.1	PASS	ND	Reagent: 030324.R03: 040423.08: 021424.R18:	021424.R1)			
EVINPHOS	0.010	ppm	0.1	PASS	ND	Consumables : 326250IW; 14725401					
YCLOBUTANIL	0.010	ppm	0.1	PASS	ND	Pipette: DA-080; DA-146; DA-218					
ALED	0.010	ppm	0.25	PASS	ND	Testing for agricultural agents is performed utilizing	Gas Chroma	tography Tri	ple-Quadrupole	Mass Spectrome	try in

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164 1/2

03/08/24

Revision: #1 - Updated Strain Name

Kaycha Labs

710 Labs Persy Rosin 1g - Cake Crasher

Cake Crasher Matrix: Derivative

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Email: brian@theflowerv.co Sample : DA40304003-009 Harvest/Lot ID: 20231221-710CC-FL3H3

Batch#:1000186645 Sampled: 03/04/24 Ordered: 03/04/24

Sample Size Received: 16 gram Total Amount: 451 units

Completed: 03/08/24 Expires: 03/11/25 Sample Method: SOP.T.20.010

Page 4 of 6

Residual Solvents

PASSED

Solvents	LOD	Units	Action Level	Pass/Fail	Result
1,1-DICHLOROETHENE	0.800	ppm	8	PASS	ND
1,2-DICHLOROETHANE	0.200	ppm	2	PASS	ND
ACETONE	75.000	ppm	750	PASS	ND
DICHLOROMETHANE	12.500	ppm	125	PASS	ND
BENZENE	0.100	ppm	1	PASS	ND
2-PROPANOL	50.000	ppm	500	PASS	ND
CHLOROFORM	0.200	ppm	2	PASS	ND
ETHANOL	500.000	ppm	5000	PASS	ND
ETHYL ACETATE	40.000	ppm	400	PASS	ND
BUTANES (N-BUTANE)	500.000	ppm	5000	PASS	ND
ACETONITRILE	6.000	ppm	60	PASS	ND
ETHYL ETHER	50.000	ppm	500	PASS	ND
ETHYLENE OXIDE	0.500	ppm	5	PASS	ND
HEPTANE	500.000	ppm	5000	PASS	ND
METHANOL	25.000	ppm	250	PASS	ND
N-HEXANE	25.000	ppm	250	PASS	ND
PENTANES (N-PENTANE)	75.000	ppm	750	PASS	ND
TOLUENE	15.000	ppm	150	PASS	ND
TOTAL XYLENES	15.000	ppm	150	PASS	ND
PROPANE	500.000	ppm	5000	PASS	ND
TRICHLOROETHYLENE	2.500	ppm	25	PASS	ND
Analyzed by: 850, 1665, 53, 1440	Weight: 0.0234g	Extraction da 03/07/24 14			Extracted by: 850

Analysis Method : SOP.T.40.041.FL Analytical Batch : DA070167SOL Instrument Used: DA-GCMS-003

Analyzed Date: $03/07/24\ 15:05:53$

Dilution: 1 $\textbf{Reagent:} \ \, \textbf{N/A}$

Consumables: G201.062; G201.062 **Pipette :** DA-309 25 uL Syringe 35028

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Revision: #1 This revision supersedes any and all previous versions of this document.

Vivian Celestino

Reviewed On: 03/07/24 16:45:45

Batch Date: 03/06/24 14:31:29

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Revision: #1 - Updated Strain Name

03/08/24

Kaycha Labs

710 Labs Persy Rosin 1g - Cake Crasher

Cake Crasher

Matrix : Derivative Type: Live Rosin

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co. Sample : DA40304003-009

Harvest/Lot ID: 20231221-710CC-FL3H3

Batch#:1000186645 Sampled: 03/04/24 Ordered: 03/04/24

Sample Size Received: 16 gram Total Amount: 451 units Completed: 03/08/24 Expires: 03/11/25 Sample Method: SOP.T.20.010

Page 5 of 6

Microbial

Mycotoxins

PASSED

Analyte	LOD	Units	Result	Pass / Fail	Action Level
ASPERGILLUS TERREUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
SALMONELLA SPECIFIC GENE			Not Present	PASS	
ECOLI SHIGELLA			Not Present	PASS	
TOTAL YEAST AND MOLD	10	CFU/g	<10	PASS	100000

Analyzed by: Weight: **Extraction date:** Extracted by: 0.9736g 3390, 53, 1665, 1440 03/06/24 12:04:35 3390,4044

Analysis Method : SOP.T.40.056C, SOP.T.40.058.FL, SOP.T.40.209.FL

Analytical Batch: DA070109MIC

Reviewed On: 03/08/24

Batch Date: 03/05/24 Instrument Used: PathogenDx Scanner DA-111.Applied Biosystems Thermocycler DA-010, fisherbrand Isotemp Heat Block 17:39:25

DA-020, fisherbrand Isotemp Heat Block DA-049, Fisher Scientific

Isotemp Heat Block DA-021 **Analyzed Date :** 03/06/24 18:39:38

Dilution: N/A

Reagent: 012424.42; 012424.47; 022224.R10; 083123.107

Consumables: 7569001036

Pipette: N/A

0						
Analyte		LOD	Units	Result	Pass / Fail	Action Level
AFLATOXIN B	2	0.002	ppm	ND	PASS	0.02
AFLATOXIN B	1	0.002	ppm	ND	PASS	0.02
OCHRATOXIN	Α	0.002	ppm	ND	PASS	0.02
AFLATOXIN G	1	0.002	ppm	ND	PASS	0.02

Analyzed by: 3379, 53, 1665, 1440	Weight: 0.2524g	Extraction date: 03/06/24 17:46:07			Extract 3379	ed by:	
AFLATOXIN G2		0.002	ppm	ND	PASS	0.02	
AFLATOXIN G1		0.002	ppm	ND	PASS	0.02	
OCHRATOXIN A		0.002	ppm	ND	PASS	0.02	
AFLATOXIN B1		0.002	ppm	ND	PASS	0.02	

Analysis Method: SOP.T.30.101.FL (Gainesville), SOP.T.40.101.FL (Gainesville), SOP.T.30.102.FL (Davie), SOP.T.40.102.FL (Davie)

Analytical Batch : DA070128MYC Reviewed On: 03/07/24 14:05:02 Instrument Used : N/A Batch Date: 03/06/24 09:04:55 Analyzed Date: 03/06/24 18:03:31

Dilution: 250
Reagent: 030624.R05; 030624.R03; 030324.R03; 030624.R04; 021324.R05; 030624.R01; 040423.08

Consumables: 326250IW Pipette: DA-093; DA-094; DA-219

Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Heavy Metals

3390, 1665, 1440	Weight: 0.9736g	03/06/24 12:04:35	3390,4044
Analysis Method : SOP. Analytical Batch : DAO Instrument Used : Incu Analyzed Date : 03/06/	70110TYM bator (25-27*C) I		on: 03/08/24 18:36:37 : 03/05/24 17:41:58
Dilution: N/A Reagent: 012424.42; Consumables: N/A Pipette: N/A	012424.47; 0125	24.R09	
Total yeast and mold test accordance with F.S. Rule		ilizing MPN and traditional cult	cure based techniques in

Metal		LOD	Units	Result	Pass / Fail	Action Level
TOTAL CONTAMINANT	LOAD METALS	0.080	ppm	ND	PASS	1.1
ARSENIC		0.020	ppm	ND	PASS	0.2
CADMIUM		0.020	ppm	ND	PASS	0.2
MERCURY		0.020	ppm	ND	PASS	0.2
LEAD		0.020	ppm	ND	PASS	0.5
Analyzed by: 1022, 1665, 1440	Weight: 0.281g	Extraction da 03/06/24 14:			Extracted 1022	l by:

Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL

Analytical Batch: DA070104HEA Instrument Used : DA-ICPMS-004 Analyzed Date: 03/06/24 18:39:24

Reviewed On: 03/07/24 13:55:22 Batch Date: 03/05/24 14:09:07

Dilution: 50

Reagent: 030524.R01; 030424.R04; 030424.R01; 030424.R02; 030424.R03; 030424.01;

021324.R02

Consumables: 179436; 34623011; 210508058

Pipette: DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

03/08/24

Revision: #1 - Updated Strain Name

Revision: #1 This revision supersedes any and all previous versions of this document.

Kaycha Labs

710 Labs Persy Rosin 1g - Cake Crasher Cake Crasher

Matrix: Derivative Type: Live Rosin

PASSED

Certificate of Analysis

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co. Sample : DA40304003-009

Harvest/Lot ID: 20231221-710CC-FL3H3

Batch#:1000186645 Sampled: 03/04/24 Ordered: 03/04/24

Sample Size Received: 16 gram Total Amount: 451 units Completed: 03/08/24 Expires: 03/11/25 Sample Method: SOP.T.20.010

Page 6 of 6

Filth/Foreign Material

PASSED

Analyte LOD Units Result P/F **Action Level** Filth and Foreign Material 0.100 % ND PASS 1

Analyzed by: 1879, 1665, 1440 NA N/A N/A

Analysis Method: SOP.T.40.090

Analytical Batch : DA070175FIL
Instrument Used : Filth/Foreign Material Microscope Reviewed On: 03/07/24 00:13:50 Batch Date: 03/06/24 22:36:32

Analyzed Date: 03/06/24 23:37:31

Dilution: N/AReagent: N/A Consumables : N/A Pipette: N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Water Activity

Reviewed On: 03/07/24 14:10:20

Batch Date: 03/06/24 11:17:20

Analyte Water Activity	LOD 0.010	Units aw	Result 0.503	P/F PASS	Action Le	eve
Analyzed by: 4056, 53, 1665, 1440	Weight: 0.367g	Extraction 03/06/24	on date: 4 19:13:41		extracted by:	

Analysis Method: SOP.T.40.019 Analytical Batch: DA070164WAT

Instrument Used : DA256 Rotronic HygroPalm

Analyzed Date: 03/06/24 13:40:24

Dilution : N/A Reagent: 022024.28 Consumables : PS-14 Pipette: N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Vivian Celestino

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

03/08/24

Revision: #1 - Updated Strain Name