

COMPLIANCE FOR RETAIL

Kaycha Labs

710 Labs Live Badder 2.5g - Sugar Shack #16

Sugar Shack #16 Matrix: Derivative

Type: Live Badder

Sample: DA30601009-003 Harvest/Lot ID: 20230308-710SUSH16-F2H5

Batch#: 1000098831

Cultivation Facility: Homestead Processing Facility: Homestead Source Facility: Homestead

Seed to Sale# LFG-00001743

Batch Date: 05/31/23

Sample Size Received: 17.5 gram Total Amount: 140 units

> Retail Product Size: 2.5 gram Ordered: 06/01/23 Sampled: 06/01/23

Completed: 06/05/23

Sampling Method: SOP.T.20.010

PASSED

#FLOWERY

Jun 05, 2023 | The Flowery

Samples From: Homestead, FL, 33090, US

PRODUCT IMAGE

SAFETY RESULTS

Pesticides

Certificate of Analysis

Heavy Metals

Microbials

Mycotoxins

Residuals Solvents PASSED

Filth

Pages 1 of 6

Water Activity

Moisture

TESTED

PASSED

Cannabinoid

Total THC

76.17% Total THC/Container: 1904.25 mg

Total CBD 0.157% Total CBD/Container: 3.925 mg

Reviewed On: 06/03/23 14:22:33 Batch Date: 06/02/23 10:09:09

Total Cannabinoids 88.029%

Total Cannabinoids/Container: 2200.725 mg

		•									
	D9-THC	THCA	CBD	CBDA	D8-THC	CBG	CBGA	CBN	THCV	CBDV	СВС
,	7.973	77.762	ND	0.18	ND	0.46	1.573	ND	ND	ND	0.081
g/unit	199.325	1944.05	ND	4.5	ND	11.5	39.325	ND	ND	ND	2.025
OD	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	%	%	%	%	%	%	%	%	%	%	%
lyzed by:	1440		/	Weight:		Extraction date: 06/02/23 12:29:01				Extracted by:	

Analysis Method : SOP.T.40.031, SOP.T.30.031 Analytical Batch : DA060935POT Instrument Used : DA-LC-003

Analyzed Date: 06/02/23 12:47:05

Reagent: 053123.R35; 032123.11; 053123.R32

Consumables: 250346; CE0123; 61633-125C6-125E; R1KB14270

Pipette : DA-079; DA-108; DA-078

Full Spectrum cannabinoid analysis utilizing High Performance Liquid Chromatography with UV detection in accordance with F.S. Rule 64ER20-39

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

Kaycha Labs

710 Labs Live Badder 2.5g - Sugar Shack #16

Sugar Shack #16 Matrix : Derivative Type: Live Badder

Certificate of Analysis

Sample : DA30601009-003 Harvest/Lot ID: 20230308-710SUSH16-F2H5

Batch#: 1000098831 Sampled: 06/01/23 Ordered: 06/01/23

Sample Size Received: 17.5 gram Total Amount : 140 units Completed: 06/05/23 Expires: 06/05/24 Sample Method: SOP.T.20.010

PASSED

Page 2 of 6

Samples From: Homestead, FL, 33090, US

Telephone: (321) 266-2467

Fmail: hrian@theflowerv.co

Terpenes

TESTED

SENE -HUMULENE CENE ROLIDOL -NEROLIDOL -NERO	0 0 0 0 0 0 Weight: 1.0884g SOP.T.40.061A.FL	06/02	5 0.021 0.268 ND tion date: 23 16:20:24 Reviewed On :	06/05/23 09:51:00 06/05/23 09:37:45	Extracted by: 2076
CENE ROLIDOL	0 0 0 0 0 0 Weight: 1.0884g SOP.T.40.061A.FL	007 ND 007 ND 007 1.7 007 0.5 007 6.7 007 ND Extra 06/02	ND ND 0.07 5 0.021 0.268 ND tion date: 23 16:20:24		2076
ROLIDOL -NEROLIDOL -NEROLIDOL -NEROLIDOL -NETULINE OXIDE L J J J J J J J J J J J J J J J J J J	0 0 0 0 0 Weight: 1.0884g SOP.T.40.061A.FL	007 ND 007 1.7 007 0.5 007 6.7 007 ND Extra 06/02	ND 0.07 5 0.021 0.268 ND tion date: 23 16:20:24		2076
-NEROLIDOL PHYLLENE OXIDE L L 10. 1 by: 15, 1440 Method: SOPT,30.061A.FL, S(all Batch: DA060931TER ent Used: DA:GCMS-004 1 Date: :060/223 37:55:34 1 0 1 121622.25 bibles: 21.0414634; MKCN9995	0 0 0 0 Weight: 1.0884g SOP.T.40.061A.FL	007 1.7 007 0.5 007 6.7 007 ND Extra 06/02	0.07 5 0.021 0.268 ND tion date: 23 16:20:24 Reviewed On :		2076
PHYLLENE OXIDE L 1 by: 15, 1440 Method: SOP T.30.061A.FL, SI al Batch: DA060931TER nt Used: DA.6CMS-004 4 Date: 06/02/23 17:55:34 : 121622.25 bibles: 210414634; MKCN9995	0 0 0 Weight: 1.0884g SOP.T.40.061A.FL	007 0.5 007 6.7 007 ND Extra 06/02	5 0.021 0.268 ND tion date: 23 16:20:24 Reviewed On :		2076
L L J by: 15, 1440 150; 15, 1440 16 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,	0 0 Weight: 1.0884g SOP.T.40.061A.FL	007 6.7 007 ND Extra 06/02	0.268 ND tion date: 23 16:20:24 Reviewed On:		2076
DL d by: is, 1440 Method: SOP.T.30.061A.FL, Si al Batch: DA060931TER nt Used: DA.GCMS-004 Date: 06/02/23 17:55:34 : 10 : 121622.25 bibles: 210414634; MKCN9995 N/A	0 Weight: 1.0884g SOP.T.40.061A.FL	007 ND Extra 06/02	ND tion date: 23 16:20:24 Reviewed On:		2076
I by: 15, 1440 Method: SOP.T.30.061A.FL, S(al Batch: DA060931TER ant Used: DA-GCMS-004 d Date: 06/02/23 17:55:34 : 10 : 121622.25 bbbs: : 210414634; MKCN9995 : N/A	Weight: 1.0884g SOP.T.40.061A.FL 15; CE0123; R1KB142	Extra 06/02	tion date: 23 16:20:24 Reviewed On :		2076
is, 1440 Method : SOP.T.;30.061A.FL, Si al Batch : DA060931TER ent Used : DA-GCMS-004 d Date : 06/02/23 17;55:34 : 10 : 121652.25 bables : 210414634; MKCN9995 NA	1.0884g SOP.T.40.061A.FL 15; CE0123; R1KB142	06/02	23 16:20:24 Reviewed On :		2076
Method: SOP.T.,30.061A.FL, SI al Batch: DA060931TER ent David : DA-GCMS-004 the toda: DA-GCMS-004 : 10 : 121622.25 bbles: 210414634; MKCN9995 N/A	SOP.T.40.061A.FL		Reviewed On :		
al Batch: DA060931TER eint Used: DA-GCMS-004 d Date: 06/02/23 17:55:34 : 10 : 121622.25 ables: 210414634; MKCN9995 : N/A	5; CE0123; R1KB142	70			
ent Used: DA-GCMS-004 d Date: 06/02/23 17:55:34 : 10 : 121622.25 ables: 210414634; MKCN9995 : N/A		70			
d Date: 06/02/23 17:55:34 : 10 : 121622.25 ables: 210414634; MKCN9995 : N/A		70	Batch Date : 00	102123 03.37.43	
: 121622.25 ables : 210414634; MKCN9995 : N/A		70			
ables : 210414634; MKCN9995 : N/A		70			
N/A		70			
	is Unromatograpny Mass	Spectrometry.	ror all Flower sam	ipies, the Total Terpenes	% is ary-weight corrected.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

710 Labs Live Badder 2.5g - Sugar Shack #16

Sugar Shack #16 Matrix : Derivative Type: Live Badder

PASSED

Certificate of Analysis

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467

Sample: DA30601009-003 Harvest/Lot ID: 20230308-710SUSH16-F2H5

Batch#: 1000098831 Sampled: 06/01/23 Ordered: 06/01/23

Sample Size Received: 17.5 gram Total Amount : 140 units Completed: 06/05/23 Expires: 06/05/24 Sample Method: SOP.T.20.010

Page 3 of 6

Pesticides

	PA	159	SE	D
--	----	-----	----	---

Pesticide	LOD		Action Level	Pass/Fail		Pesticide		LOD	Units	Action Level	Pass/Fail	Resul		
OTAL CONTAMINANT LOAD (PESTICIDES)	0.01	ppm	5	PASS	ND	OXAMYL		0.01	ppm	0.5	PASS	ND		
OTAL DIMETHOMORPH	0.01	ppm	0.2	PASS	ND	PACLOBUTRAZOL		0.01	ppm	0.1	PASS	ND		
OTAL PERMETHRIN	0.01	ppm	0.1	PASS	ND	PHOSMET		0.01	ppm	0.1	PASS	ND		
OTAL PYRETHRINS	0.01	ppm	0.5	PASS	ND	PIPERONYL BUTOXIDE		0.01	mag	3	PASS	ND		
OTAL SPINETORAM	0.01	ppm	0.2	PASS	ND	PRALLETHRIN		0.01	mag	0.1	PASS	ND		
OTAL SPINOSAD	0.01	ppm	0.1	PASS	ND	PROPICONAZOLE		0.01	ppm	0.1	PASS	ND		
BAMECTIN B1A	0.01	ppm	0.1	PASS	ND			0.01	ppm	0.1	PASS	ND		
СЕРНАТЕ	0.01	ppm	0.1	PASS	ND	PROPOXUR								
CEQUINOCYL	0.01	ppm	0.1	PASS	ND	PYRIDABEN		0.01	ppm	0.2	PASS	ND		
CETAMIPRID	0.01	ppm	0.1	PASS	ND	SPIROMESIFEN		0.01	ppm	0.1	PASS	ND		
LDICARB	0.01	ppm	0.1	PASS	ND	SPIROTETRAMAT		0.01	ppm	0.1	PASS	ND		
ZOXYSTROBIN	0.01	ppm	0.1	PASS	ND	SPIROXAMINE		0.01	ppm	0.1	PASS	ND		
IFENAZATE	0.01	ppm	0.1	PASS	ND	TEBUCONAZOLE		0.01	ppm	0.1	PASS	ND		
FENTHRIN	0.01	ppm	0.1	PASS	ND	THIACLOPRID		0.01	ppm	0.1	PASS	ND		
OSCALID	0.01	ppm	0.1	PASS	ND	THIAMETHOXAM		0.01	ppm	0.5	PASS	ND		
ARBARYL	0.01	ppm	0.5	PASS	ND	TRIFLOXYSTROBIN		0.01	ppm	0.1	PASS	ND		
ARBOFURAN	0.01	ppm	0.1	PASS	ND	PENTACHLORONITROBENZENE (F		0.01	PPM	0.15	PASS	ND		
HLORANTRANILIPROLE	0.01	ppm	1	PASS	ND			0.01	PPM	0.13	PASS	ND		
HLORMEQUAT CHLORIDE	0.01	ppm	1	PASS	ND	PARATHION-METHYL *				0.7		ND		
HLORPYRIFOS	0.01	ppm	0.1	PASS	ND	CAPTAN *		0.07	PPM		PASS			
LOFENTEZINE	0.01	ppm	0.2	PASS	ND	CHLORDANE *		0.01	PPM	0.1	PASS	ND		
DUMAPHOS	0.01	ppm	0.1	PASS	ND	CHLORFENAPYR *		0.01	PPM	0.1	PASS	ND		
AMINOZIDE	0.01	ppm	0.1	PASS	ND	CYFLUTHRIN *		0.05	PPM	0.5	PASS	ND		
AZINON	0.01	ppm	0.1	PASS	ND	CYPERMETHRIN *		0.05	PPM	0.5	PASS	ND		
ICHLORVOS	0.01	ppm	0.1	PASS	ND	Analyzed by: We	ight: E	ktract	ion date:		Extracted	bv:		
IMETHOATE	0.01	ppm	0.1	PASS	ND	3379, 585, 1440 0.2			3 15:08:42		3379,585	.,		
THOPROPHOS	0.01	ppm	0.1	PASS	ND	Analysis Method: SOP.T.30.101.Fl	L (Gainesville),	SOP.T	.30.102.FL (Davie), SOP	.T.40.101.FL (Gaines		
TOFENPROX	0.01	ppm	0.1	PASS	ND	SOP.T.40.102.FL (Davie)		Reviewed On :06/05/23 09:43:52 Batch Date :06/02/23 10:07:16						
TOXAZOLE	0.01	ppm	0.1	PASS	ND	Analytical Batch : DA060934PES	DEC)							
ENHEXAMID	0.01	ppm	0.1	PASS	ND	Instrument Used : DA-LCMS-003 (R Analyzed Date : 06/02/23 15:11:01								
ENOXYCARB	0.01	ppm	0.1	PASS	ND	Dilution : 250								
ENPYROXIMATE	0.01	ppm	0.1	PASS	ND	Reagent: 053023.R01; 053123.R4	7: 053023.R02	2: 0602	223.R18: 04	2623.R45: 0	53123.R04: 04	40521.1		
IPRONIL	0.01	ppm	0.1	PASS	ND	Consumables: 6697075-02 Pipette: DA-093; DA-094; DA-219			3.102, 000223.1110, 042023.1143, 033123.1104, 040321.11					
LONICAMID	0.01	ppm	0.1	PASS	ND									
LUDIOXONIL	0.01	ppm	0.1	PASS	ND	Testing for agricultural agents is performed utilizing Liquid Chromatography Triple-Quadrupole Mass				ass				
EXYTHIAZOX	0.01	ppm	0.1	PASS	ND	Spectrometry in accordance with F.S			\/					
MAZALIL	0.01	ppm	0.1	PASS PASS	ND ND	Analyzed by: Weig 450, 585, 1440 0.219			on date: 15:08:42		Extracted 3379.585	by:		
/IDACLOPRID	0.01	ppm	0.4	PASS	ND ND	Analysis Method : SOP.T.30.151.Fl	3			(Davie) so				
RESOXIM-METHYL	0.01	ppm	0.1	PASS	ND ND	Analytical Batch : DA060940VOL	L (Gairlesville),			:06/05/23 1				
ALATHION	0.01	ppm		PASS		Instrument Used : DA-GCMS-001				06/02/23 10:				
ETALAXYL	0.01	ppm	0.1	PASS	ND	Analyzed Date: 06/03/23 14:39:06	5							
ETHIOCARB	0.01	ppm	0.1		ND	Dilution: 250								
ETHOMYL	0.01	ppm	0.1	PASS	ND	Reagent: 053023.R02; 040521.11		05182	23.R44					
EVINPHOS	0.01	ppm	0.1	PASS	ND	Consumables: 6697075-02; 1472								
IYCLOBUTANIL	0.01	ppm	0.1	PASS	ND	Pipette : DA-080; DA-146; DA-218					1 1 1			
NALED	0.01	ppm	0.25	PASS	ND	Testing for agricultural agents is per in accordance with F.S. Rule 64ER20		GdS C	momatograp	лту ттрie-Qu	aurupole Mass	spectro		

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

710 Labs Live Badder 2.5g - Sugar Shack #16

Sugar Shack #16 Matrix : Derivative Type: Live Badder

Certificate of Analysis

PASSED

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467 Fmail: hrian@theflowerv.co

Harvest/Lot ID: 20230308-710SUSH16-F2H5

Batch#: 1000098831 Sampled: 06/01/23 Ordered: 06/01/23

Sample Size Received: 17.5 gram Total Amount: 140 units Completed: 06/05/23 Expires: 06/05/24 Sample Method: SOP.T.20.010

Page 4 of 6

Residual Solvents

PASSED

Solvents	LOD	Units	Action Level	Pass/Fail	Result	
1,1-DICHLOROETHENE	0.8	ppm	8	PASS	ND	
1,2-DICHLOROETHANE	0.2	ppm 2		PASS	ND	
2-PROPANOL	50	ppm	500	PASS	<250	
ACETONE	75	ppm	750	PASS	ND	
ACETONITRILE	6	ppm	60	PASS	ND	
BENZENE	0.1	ppm	1	PASS	ND	
BUTANES (N-BUTANE)	500	ppm	5000	PASS	ND	
CHLOROFORM	0.2	ppm 2 ppm 125		PASS	ND	
DICHLOROMETHANE	12.5			PASS	ND	
THANOL	500	ppm	5000	PASS	ND	
ETHYL ACETATE	40	ppm	400	PASS	ND	
ETHYL ETHER	50	ppm	500	PASS	ND	
THYLENE OXIDE	0.5	ppm	5	PASS	ND	
HEPTANE	500	ppm	5000	PASS	ND	
METHANOL	25	ppm	250	PASS	ND	
N-HEXANE	25	ppm	250	PASS	ND	
PENTANES (N-PENTANE)	75	ppm	750	PASS	ND	
PROPANE	500	ppm	5000	PASS	ND	
TOLUENE	15	ppm	150	PASS	ND	
TOTAL XYLENES	15	ppm	150	PASS	ND	
TRICHLOROETHYLENE	2.5	ppm	25	PASS	ND	
Analyzed by: 850, 585, 1440	Weight: 0.0277g	Extraction date: 06/05/23 14:18:	Extraction date: 06/05/23 14:18:51			

Analysis Method : SOP.T.40.041.FL Analytical Batch : DA060960SOL Instrument Used: DA-GCMS-002

Analyzed Date: 06/05/23 14:36:49 Dilution: 1

Reagent: 030420.09 Consumables: R2017.167; G201.167 Pipette: DA-309 25uL Syringe 35028 Reviewed On: 06/05/23 15:11:29 Batch Date: 06/02/23 13:14:36

Residual solvents analysis is performed utilizing Gas Chromatography Mass Spectrometry in accordance with with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA-Testing 97164

Kaycha Labs

710 Labs Live Badder 2.5g - Sugar Shack #16

Sugar Shack #16 Matrix : Derivative

Type: Live Badder

Certificate of Analysis

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467

Harvest/Lot ID: 20230308-710SUSH16-F2H5

Batch#: 1000098831 Sampled: 06/01/23 Ordered: 06/01/23

Sample Size Received: 17.5 gram Total Amount: 140 units Completed: 06/05/23 Expires: 06/05/24 Sample Method: SOP.T.20.010

PASSED

Page 5 of 6

ppm

Microbial

PASSED

Mycotoxins

PASSED

Action

Level

0.02

Pass /

Fail

PASS

Result

ND

Batch Date: 06/02/23 10:19:32

Analyte	LOD	Units	Result	Pass / Fail	Action Level	Analyte
ASPERGILLUS TERREUS			Not Present	PASS		AFLATOXIN B2
ASPERGILLUS NIGER			Not Present	PASS		AFLATOXIN B1
ASPERGILLUS FUMIGATUS			Not Present	PASS		OCHRATOXIN A
ASPERGILLUS FLAVUS			Not Present	PASS		AFLATOXIN G1
SALMONELLA SPECIFIC GENE			Not Present	PASS		AFLATOXIN G2
ECOLI SHIGELLA			Not Present	PASS		Analyzed by:
TOTAL YEAST AND MOLD	10	CFU/g	<10	PASS	100000	3379, 585, 1440
Analysis I Malaka	Francisco de terr		-	and the state of the	/	

Weight: **Extraction date:** Extracted by: 3621, 585, 1440 0.9635g 06/02/23 12:47:40 3621,3390

Analysis Method: SOP.T.40.056C, SOP.T.40.058.FL, SOP.T.40.209.FL

Analytical Batch: DA060903MIC

Reviewed On: 06/05/23

Batch Date: 06/02/23

Instrument Used: PathogenDx Scanner DA-111.Applied Biosystems Thermocycler DA-010,fisherbrand Isotemp Heat Block DA-020, fisherbrand Isotemp Heat Block DA-049, Fisher Scientific

Isotemp Heat Block DA-021 **Analyzed Date :** 06/02/23 13:08:58

Reagent: 032123.02; 052323.R22; 092122.03; 092122.09

Consumables: 7562002065

Pipette: N/A

Analysis Method : SOP SOP.T.30.102.FL (Dav			40.101.F	L (Gaine	esville),	
Analyzed by: 3379, 585, 1440	Weight: 0.219g	Extraction dat 06/02/23 15:0		Extracted 3379,585	by:	
AFLATOXIN G2		0.002	ppm	ND	PASS	0.02
AFLATOXIN G1		0.002	ppm	ND	PASS	0.02
OCHRATOXIN A		0.002	ppm	ND	PASS	0.02
AFLATOXIN B1		0.002	ppm	ND	PASS	0.02

LOD

0.002

Reviewed On: 06/05/23 09:46:01

Analytical Batch: DA060939MYC Instrument Used: N/A

Analyzed Date: 06/02/23 15:11:37

Dilution: 250

Reagent: 053023.R01; 053123.R47; 053023.R02; 060223.R18; 042623.R45; 053123.R04; 040521.11

Consumables: 6697075-02

Pipette: DA-093; DA-094; DA-219

Mycotoxins testing utilizing Liquid Chromatography with Triple-Quadrupole Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

Heavy Metals

PASSED

Analyzed by: 3621, 585, 1440	Weight: 0.9635g	Extraction 06/02/23	on date: 3 12:47:40	Extracted by: 3621,3390		
Analysis Method : SOR Analytical Batch : DAG		esville), SOF		n: 06/05/23 09:31:47		
Instrument Used : Incl Analyzed Date : 06/02		Batch Date : 06/02/23 13:11:31				
Dilution : 10						

Extraction date:

Reagent: 032123.02; 050923.R23 Consumables : N/A Pipette : N/A

Total yeast and mold testing is performed utilizing MPN and traditional culture based techniques in accordance with F.S. Rule 64ER20-39.

Metal		LOD	Units	Result	Pass / Fail	Action Level		
TOTAL CONTAMINANT LO	. s 0.08	ppm	ND	PASS	1.1			
ARSENIC		0.02	ppm	ND	PASS	0.2		
CADMIUM		0.02	ppm	ND	PASS	0.2		
MERCURY		0.02	ppm	ND	PASS	0.2		
LEAD		0.02	ppm	< 0.1	PASS	0.5		
	eight: 2563g	Extraction date: 06/02/23 10:58:56			ktracted k 619,1022		7	

Analysis Method: SOP.T.30.082.FL, SOP.T.40.082.FL

Analytical Batch: DA060930HEA Instrument Used: DA-ICPMS-003 Analyzed Date: 06/02/23 14:37:07 Reviewed On: 06/03/23 16:29:04 Batch Date: 06/02/23 09:34:59

Dilution: 50

Reagent: 050923.R24; 042623.R82; 052623.R37; 053123.R03; 052623.R35; 052623.R36; 052523.R15; 050923.01; 051823.R28

Consumables: 179436; 210508058 Pipette: DA-061; DA-191; DA-216

Heavy Metals analysis is performed using Inductively Coupled Plasma Mass Spectrometry in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

710 Labs Live Badder 2.5g - Sugar Shack #16

Sugar Shack #16 Matrix : Derivative Type: Live Badder

PASSED

Page 6 of 6

Certificate of Analysis

Samples From: Homestead, FL, 33090, US Telephone: (321) 266-2467

Harvest/Lot ID: 20230308-710SUSH16-F2H5

Batch#: 1000098831 Sampled: 06/01/23 Ordered: 06/01/23

Sample Size Received: 17.5 gram Total Amount: 140 units Completed: 06/05/23 Expires: 06/05/24 Sample Method: SOP.T.20.010

Filth/Foreign Material

PASSED

Action Level

Analyte LOD Filth and Foreign Material 0.1

Result ND PASS

Analyzed by: 1879, 1440 Weight: NA N/A

N/A

Analysis Method: SOP.T.40.090

Analytical Batch : DA060961FIL
Instrument Used : Filth/Foreign Material Microscope

Reviewed On: 06/02/23 15:45:32 Batch Date: 06/02/23 13:15:07

Analyzed Date: 06/02/23 15:26:23

Dilution: N/AReagent: N/A Pipette: N/A

Filth and foreign material inspection is performed by visual inspection utilizing naked eye and microscope technologies in accordance with F.S. Rule 64ER20-39.

Units

%

Water Activity

PASSED

Analyte LOD Units Result P/F **Action Level** PASS Water Activity 0.01 aw 0.451 0.85 Extraction date: 06/02/23 15:37:36 Extracted by: 2926

Analyzed by: 2926, 585, 1440 Analysis Method: SOP.T.40.019

Analytical Batch: DA060879WAT Instrument Used : DA-028 Rotronic Hygropalm Reviewed On: 06/02/23 15:49:47 Batch Date: 06/01/23 10:59:29

Analyzed Date: 06/01/23 14:16:57

Dilution: N/A Reagent: 100522.09 Consumables : PS-14 Pipette: N/A

Water Activity is performed using a Rotronic HygroPalm HP 23-AW in accordance with F.S. Rule 64ER20-39.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on F.S. Rule 64ER20-39 and F.S. Rule 5K-4. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Jorge Segredo

Lab Director

State License # CMTL-0002 ISO 17025 Accreditation # ISO/IEC 17025:2017 Accreditation PJLA Testing 97164

